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Harnessing wearable device data to improve state-level 
real-time surveillance of influenza-like illness in the USA: 
a population-based study 
Jennifer M Radin, Nathan E Wineinger, Eric J Topol, Steven R Steinhubl

Summary
Background Acute infections can cause an individual to have an elevated resting heart rate (RHR) and change their 
routine daily activities due to the physiological response to the inflammatory insult. Consequently, we aimed to 
evaluate if population trends of seasonal respiratory infections, such as influenza, could be identified through 
wearable sensors that collect RHR and sleep data.

Methods We obtained de-identified sensor data from 200 000 individuals who used a Fitbit wearable device from 
March 1, 2016, to March 1, 2018, in the USA. We included users who wore a Fitbit for at least 60 days and used the 
same wearable throughout the entire period, and focused on the top five states with the most Fitbit users in the 
dataset: California, Texas, New York, Illinois, and Pennsylvania. Inclusion criteria included having a self-reported 
birth year between 1930 and 2004, height greater than 1 m, and weight greater than 20 kg. We excluded daily 
measurements with missing RHR, missing wear time, and wear time less than 1000 min per day. We compared 
sensor data with weekly estimates of influenza-like illness (ILI) rates at the state level, as reported by the US Centers 
for Disease Control and Prevention (CDC), by identifying weeks in which Fitbit users displayed elevated RHRs and 
increased sleep levels. For each state, we modelled ILI case counts with a negative binomial model that included 
3-week lagged CDC ILI rate data (null model) and the proportion of weekly Fitbit users with elevated RHR and 
increased sleep duration above a specified threshold (full model). We also evaluated weekly change in ILI rate by 
linear regression using change in proportion of elevated Fitbit data. Pearson correlation was used to compare 
predicted versus CDC reported ILI rates.

Findings We identified 47 249 users in the top five states who wore a Fitbit consistently during the study period, 
including more than 13·3 million total RHR and sleep measures. We found the Fitbit data significantly improved ILI 
predictions in all five states, with an average increase in Pearson correlation of 0·12 (SD 0·07) over baseline models, 
corresponding to an improvement of 6·3–32·9%. Correlations of the final models with the CDC ILI rates ranged 
from 0·84 to 0·97. Week-to-week changes in the proportion of Fitbit users with abnormal data were associated with 
week-to-week changes in ILI rates in most cases.

Interpretation Activity and physiological trackers are increasingly used in the USA and globally to monitor individual 
health. By accessing these data, it could be possible to improve real-time and geographically refined influenza 
surveillance. This information could be vital to enact timely outbreak response measures to prevent further 
transmission of influenza cases during outbreaks.

Funding Partly supported by the US National Institutes of Health National Center for Advancing Translational 
Sciences.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction 
In the USA, approximately 7% of working adults and 
20% of children younger than 5 years of age get influenza 
annually.1 Traditional influenza surveillance relies largely 
on a combination of virologic and syndromic influenza-
like illness (ILI) surveillance to estimate influenza trends.2 
However, ILI surveillance has a 1–3 week reporting lag 
and is often revised weeks later by the US Centers for 
Disease Control and Prevention (CDC).3

Several groups have attempted to use rapid influenza 
tests,4 data on internet search terms (eg, Google Flu 

Trends),5 and social media outlets such as Twitter6 to 
provide real-time influenza surveillance. However, despite 
some success, Google Flu Trends was found to miss early 
waves of the 2009 H1N1 pandemic influenza7 and over
estimate activity during outbreaks.7,8 Although Twitter 
could improve traditional ILI surveillance, it had variable 
success on its own.6,9 The challenge with using these 
methods is distinguishing between activity related to an 
individual’s own illness and those related to media or 
heightened awareness and interest about influenza during 
the influenza season. Consequently, there is a great need 
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to enhance traditional ILI surveillance with new objective 
data streams that can provide real-time information on 
influenza activity.

A 2016 study estimated that 12% of US consumers 
owned a fitness band or smartwatch10 and this number 
continues to grow. Wearable sensors that continuously 
track an individual’s physiological measurements, such 
as resting heart rate (RHR), activity, and sleep, might be 
able to identify abnormal fluctuations indicting pertur
bations in one’s health, such as an acute infection. It is a 
normal physiological response to have an elevated RHR 
as a result of infection, especially when it is accompanied 
by a fever.11 Sleep and activity are also likely to differ from 
the norm when someone does not feel well. The purpose 
of our study was to evaluate whether wearable sensor 
data could improve influenza surveillance at the state 
level—so-called nowcasting. Enhanced ILI surveillance 
would improve the ability to enact quick outbreak 
response measures to prevent further spread of new 
influenza strains.

Methods
Data collection
Through a research collaboration between Scripps 
Research Translational Institute and Fitbit, we obtained 
de-identified data from a convenience sample of 
200 000 consistent users who wore a Fitbit device from 
March 1, 2016, until March 1, 2018. These users wore their 
Fitbit for at least 60 days during this study time and had 
only one Fitbit tracker for the whole period. Inclusion 
criteria included having a self-reported birth year between 
1930 and 2004, height greater than 1 m, and weight greater 
than 20 kg. User location (ie, state) was only collected for 

measurements after Dec 1, 2016, and was inferred for the 
previous period on the basis of the most frequent state 
reported. To sufficiently measure changes at a population 
level, we only evaluated users from the top five states with 
the most Fitbit users in our dataset: California, Texas, New 
York, Illinois, and Pennsylvania. De-identified Fitbit data 
were used for this study, which was determined by the 
Scripps institutional review board to be exempt from 
institutional review board review. All Fitbit users, 
including those whose data are used in this study, are 
notified that their de-identified data could potentially be 
used for research in the Fitbit Privacy Policy.

The dataset included daily measurements of RHR, 
sleep minutes from main sleep (ie, the longest sleep of 
the day), and wear time. Daily measurements with 
missing RHR, missing wear time, and wear time less 
than 1000 min per day were excluded from the study 
dataset. We also excluded data obtained in the first 
2 weeks of March, 2016, because Fitbit implemented a 
change in their RHR algorithm at that time. Daily activity 
data were not available.

We obtained final end-of-season unweighted ILI rates 
from the CDC’s FluView database.12 CDC ILI rates are 
calculated as the weekly percentage of outpatient office 
visits for ILI, which is defined as fever (temperature 
>37·8°C) and a cough or sore throat without a known 
cause other than influenza, and are collected from 
sentinel surveillance clinics.2

Calculation of the RHR
According to Fitbit, RHR is calculated as follows: periods 
of still activity during the day are identified by looking 
at the accelerometer signal provided by the device. If 

Research in context

Evidence before this study
Influenza results in up to 650 000 deaths worldwide each year. 
Traditional influenza surveillance reporting in the USA and 
globally is often delayed by 1–3 weeks, if not more, and revised 
months later. This delay can allow outbreaks to go unnoticed, 
quickly spreading to new susceptible populations and 
geographical regions. We searched PubMed from Jan 1, 1990, 
to July 20, 2019, using combinations of words or terms that 
included “influenza” OR “influenza-like illness” AND 
“predictions” OR “modeling” OR “nowcasting”. Previous studies 
have attempted to use crowd-sourced data, such as Google Flu 
Trends and Twitter, to provide real-time influenza surveillance 
information—a method known as nowcasting. However, these 
methods typically overestimate rates during epidemic periods 
and have variable success on their own, especially at the state 
level.

Added value of this study
To our knowledge, this is the first study to evaluate and show 
that objective data collected from wearables significantly 
improved nowcasting of influenza-like illness. This result held in 

all five states that we examined, with an average increase in 
Pearson correlation of 0·12 over baseline, resulting in 
correlations ranging from 0·84 to 0·97 in the final models. These 
associations remained consistent when correcting for first-order 
autocorrelation in time-matched or 1-week-lagged models.

Implications of all the available evidence
In the future, wearables could include additional sensors 
to prospectively track blood pressure, temperature, 
electrocardiogram, and cough analysis, which could be used to 
further characterise an individual’s baseline and identify 
abnormalities. Future prospective studies will help to 
differentiate deviations from an individual’s normal levels 
resulting from infectious versus non-infectious causes, and 
might even be able to identify infections before symptom 
onset. Capturing physiological and behavioural data from a 
growing number of wearable device users globally could 
greatly improve timeliness and precision of public health 
responses and even inform individual clinical care. It could also 
fill major gaps in regions where influenza surveillance data are 
not available.
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inactivity is observed for a sufficiently long time 
(eg, 5 min), then it is assumed that the person is in a 
resting state, and their heart rate at that time is used to 
estimate their RHR. If the user wears the device to sleep 
at night, their sleeping heart rate is also used to improve 
this estimate. Note that the lowest heart rate during sleep 
can be lower than the RHR since the RHR is intended to 
capture the heart rate when a user is awake and at rest.13

The manufacturer has found that the estimated RHR 
based on this algorithm closely matches the value reported 
by the Fitbit device when measured by users in a supine 
position immediately after waking.13 The manufacturer 
has also verified the accuracy of the device in measuring 
heart rate during still periods by direct comparison with 
an electrocardiogram (ECG) reference and found a mean 
average error of less than 1 beat per min (bpm).13 Fitbit 
devices have shown good agreement with polysom
nography and ECGs in measuring sleep and heart rate 
during sleep, with average heart rate less than 1 bpm 
lower than that recorded by ECG.14,15

Data analysis 
For each user, overall mean (SD) of RHR and sleep 
duration during the entire study period were calculated. 
Any users with fewer than 100 RHR measures were 
excluded. Each user’s weekly RHR and sleep averages 
were also calculated to align with CDC ILI surveillance 
data reported on a weekly basis. Users with fewer than 
four RHR measures during a given week were omitted 
from downstream analyses pertaining to that week.

We hypothesised that elevated RHR and increased 
sleep duration compared with an individual’s average 
might be indicative of ILI. During each week, a user’s 
data were identified as abnormal if their weekly average 
exceeded a given threshold: a sleep time that was longer 
than 0·5 SD below their overall average and an RHR that 
was either 0·5 SD (model 1) or 1·0 SD (model 2) above 
their overall average. Additionally, thresholds that 
included a constant value higher than average were also 
evaluated. Users were stratified by state, and the 
proportion of users meeting these thresholds each week 
was calculated. Thus, for a given state k, the proportion 
of users with abnormal data for week j is defined as xj,k,l 
where l represents the 0·5 SD (model 1) or 1·0 SD 
(model 2) thresholds above average.

The number of CDC-reported ILI cases yj,k among the 
number of outpatient office visits nj,k during each week 
over the observation period across each state k was 
likewise collected. To simplify analytic issues dealing 
with 0 case counts in a given week, 1 was added to both 
measures. The proportion of cases in each state (ie, yj,k/nj,k) 
is defined as pj,k.

Various state-stratified models were considered to 
evaluate the relationships between ILI rates and Fitbit 
data. The first naive model, mnaive, simply modelled the 
CDC ILI case count as a function of the proportion xj,k,l of 
Fitbit users with abnormal data in a given week using a 

negative binomial model with offset nj,k. Because CDC 
ILI data are often delayed by several weeks and later 
revised, a 3-week lagged autoregressive term pj −3,k was 
added to the mnaive model to create the mabs model. This 
model was similar, but more conservative, to the 
autoregressive AR(3) model used by Yang and colleagues3 
to evaluate the predictive power of Google Flu Trends 
using CDC ILI rates from up to 3 weeks before, and 
models the absolute ILI count yj,k in each week j. Formally:

where mabs is a negative binomial model with offset term 
log(nj,k). The H1 model shown assumes the ILI case count 
yj,k is affected by the proportion of users with abnormal 
data, whereas the baseline model mabs,H0 omits xj,k,l such 
that the null hypothesis is H0 : βx = 0 for each state k. 
Decisions to stratify by state were based on modifications 
of the mabs model; the modified model combined data 
across states and included a state main effect and state-
by-xj,k,l interaction term:

where 1(k) represents an indicator variable for state k, βk 
is the coefficient for the main effect, and βx*k is the 
coefficient for the interaction term. The presence of 
significant interactions indicated that the effect of the 
Fitbit variable might differ by state, and thus we opted for 
a stratified approach.

Finally, we created a linear regression model to predict 
change in ILI rate from week to week. For each state k, 
change in ILI rate is given by pj,k* = pj,k – pj − 1,k and change 
in the proportion of users with abnormal data is given by 
xj,k,l* = xj,k,l – xj – 1,k,l, and the resulting mchange model more 
appropriately accounts for autocorrelation that remains 
present in mabs:

This change is evaluated by linear regression for each 
state k with elevated sleep and RHR thresholds l. 
In the first instance, parameters corresponding to the 
change in proportion xj,k,l of elevated RHR and sleep were 
of main interest, and compared with models omitting this 
term. Cross-correlation was used to evaluate 1-week lead 
(xj − 1,k,l) and 1-week lag (xj + 1,k,l) of the Fitbit data—ie, whether 
changes in Fitbit data occurred before or after corres
ponding changes in ILI rates. Pearson correlation (r) was 
used to compare predicted rates with CDC-reported ILI 
rates for time-matched, 1-week-lag, and 1-week-lead time 
periods. Additionally, we assessed correlation using only 
influenza-season data (week 40 up to week 20 the following 
year).

mabs,H1 : log(yj,k)=β0 + βp,k ⋅ pj–3,k + βx,k ⋅ xj,k,l + log(nj,k)   

log(yj,k)=β0 + βp,k ⋅ pj−3,k + βx,k ⋅ xj,k,l + log(nj,k)    

+ ∑βk ⋅ 1(k) + ∑βx*k [xj,k,l ⋅ 1(k)]
k k

mchange : pj,k*=β0 + βx ⋅ xj,k,l* 
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Model validation
We did a validation analysis, in which we used data from 
the first season (season 1: 2016 [week 11]–2017 [week 10]) 
for model training and data from the second season 
(season 2: 2017 [week 11]–2018 [week 9]) for model 
validation. Our validation analysis showed the addition of 
the Fitbit variable improved the correlations in all states 
except New York when using just one season of data. 
When season 2 data were used to predict ILI rates using 
the model fit with season 1 data, the Fitbit variable also 
improved correlations in all states except New York 
(appendix p 10).

We were limited to 2 years of Fitbit data, and therefore 
only had one season each for training and validation. 
Consequently, we found that New York, for which ILI 
cases were not reported during summer weeks in 2017 
(season 1), had the lowest correlations for the mabs,H0 and 
mabs,H1 models compared with the other states (appendix 
p 10). Additionally, since influenza can peak at different 
times from season to season, and it had much higher 
activity in the second season, especially in California 
and Illinois, the mabs,H0 model had lower Pearson 
correlations in season 2 than in season 1 in those states. 
However, overall correlations showed improvements 
with the addition of the Fitbit variable, and reduced 
error terms (root mean squared error and mean absolute 
percentage error), indicating a better overall fit when 
the Fitbit variable was added to the models (appendix p 9).

Role of the funding source 
The funder did not play any role in data collection, 
analysis, interpretation, writing of the manuscript, or 
decision to submit. JMR had access to all the data and 
was responsible for the decision to submit the 
manuscript. The US National Institutes of Health 
National Center for Advancing Translational Sciences 

grant UL1TR002550 supported part of the salary for SRS 
and EJT. Fitbit pulled the data with input from Scripps 
Research Translational Institute.

Results
We originally obtained more than 65 million measure
ments from 200 000 Fitbit users (figure 1). Among those, 
47 249 users totalling 13 342 651 daily measurements from 
five of the most populous states met inclusion criteria 
(figure 1). The mean age of included individuals was 
42·7 years (SD 14·6) and 28 465 (60·2%) were female 
(table 1). The number of Fitbit users grew during the 
study period, especially around January, 2017 (figure 2).

On average, users in the full dataset had an RHR of 
65·6 bpm (SD 8·4), slept 6·6 h (SD 1·9) per night, and 
wore their device for 22·5 h (1·6) daily (table 2). RHR and 
sleep and wear time among users in the final dataset did 
not vary substantially by state (table 2). SDs for RHR 
(range 0·2–18·3 bpm) and sleep time (24–336 min) varied 
considerably from individual to individual.

We tested varying levels of data abnormality depending 
on different RHR and sleep measurements. Our 
model 1 threshold definitions classified 531 648 (24·3%) 
of 2 186 559 weekly measurements as abnormal, whereas 
our model 2 definitions classified 245 060 (11·2%) 
measurements as abnormal. We found the highest 
correlation with CDC-reported ILI rates when using the 
model 1 thresholds—ie, defining abnormal Fitbit data as 
0·5 SD above a user’s average RHR combined with sleep 
more than 0·5 SD below the user’s average—and made it 
our final model (table 3). We also found that the addition 
of the sleep threshold improved our models slightly over 
ones that only incorporated RHR. We found that using an 
individual’s RHR SD from the entire study period, rather 
than using a constant value higher than their average, 
resulted in higher correlations. We also found that the 
proportion of participants with Fitbit data above the 
threshold was higher during the 2017–18 influenza season 
compared with the 2016–17 influenza season (figure 2).

In all states, the mabs,H1 models had significantly higher 
correlations with ILI rates than the baseline mabs,H0 models, 
with improvements in Pearson correlations ranging from 
6·3% (New York, model 1) to 32·9% (California, model 1), 
indicating that the Fitbit variable was a significant 
predictor of ILI (table 3, figure 3). The average increase in 
Pearson correlation was 0·12 (SD 0·07) over baseline. In 
general, prediction levels from the full mabs,H1 model 
were high, although more consistently for model 1, with 
California having the highest correlation (r = 0·97; 
p<0·0001) and New York the lowest (r = 0·89; p<0·0001; 
table 2). We found a significant interaction between the 
state variable and the Fitbit variable (p<0·0001) in our 
modified mabs model, indicating that the role of the Fitbit 
variable varied by state. We also tested the correlation for 
the same model but restricted to data from the influenza 
seasons only (ie, week 40 up to week 20 in the following 
year) and found similar correlations (table 4).

See Online for appendix

Figure 1: Study profile
RHR=resting heart rate.

200 000 assessed for eligibility, including 65 153 836 days of measurements

186 656 with 46 110 818 days of measurements included
 61 179 with 15 125 057 days of measurements in the top five states 
  (California, Texas, New York, Illinois, and Pennsylvania)

19 043 018 days of measurements excluded
 5 764 014 (8·8%) wear time <1000 min/day
 12 822 330 (19·7%) wear time missing
 13 500 109 (20·7%) RHR missing
 608 382 (0·9%) data from March 1–14, 2016

47 249 with 13 342 651 days of measurements included in the final dataset

1 782 406 days of measurements excluded
 1 102 760 (7·3%) with <4 RHR measurement days
 875 651 (5·8%) from individuals with <100 total RHR
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Top five states (n=47 249) California (n=13 632) Texas (n=12 399) New York (n=7872) Illinois (n=7132) Pennsylvania (n=6214)

Gender

Female 28 465 (60·2%) 8126 (60·0%) 7139 (57·6%) 4860 (61·7%) 4444 (62·3%) 3896 (62·7%)

Male 18 594 (39·4%) 5457 (40·0%) 5205 (42·0%) 3977 (37·8%) 2658 (37·3%) 2297 (37·0%)

Unknown 190 (0·4%) 49 (0·4%) 55 (0·4%) 35 (0·4%) 30 (0·4%) 21 (0·3%)

Age (years) 42·7 (14·6) 43·5 (14·9) 41·9 (14·1) 42·6 (14·8) 42·6 (14·6) 42·7 (14·8)

BMI

Underweight (<18·5 kg/m²) 585 (1·2%) 175 (1·3%) 144 (1·2%) 90 (1·1%) 98 (1·4%) 78 (1·3%)

Normal (18·5–24·9 kg/m²) 12 751 (27·0%) 4034 (29·6%) 3158 (25·5%) 2137 (27·2%) 1822 (25·6%) 1600 (25·8%)

Overweight (25·0–29·9 kg/m²) 17 064 (36·1%) 5010 (36·8%) 4500 (36·3%) 2890 (36·7%) 2481 (34·8%) 2183 (35·1%)

Obese (≥30·0 kg/m²) 16 849 (35·7%) 4413 (32·4%) 4597 (36·3%) 2755 (35·0%) 2731 (38·3%) 2353 (37·9%)

Data are n (%) or mean (SD). BMI=body-mass index. 

Table 1: Frequency of self-reported participant characteristics by state from March 15, 2016, to March 1, 2018 (n=47 249)

Figure 2: Percentage of participants with weekly data above threshold of the mnaive model (A) and average daily wear time against number of users (B)
Data are from March 15, 2016, to March 1, 2018. (A) Measurements from 144 360 users from all states were included. Measurements with missing wear time, wear time less than 1000 min/day or 
missing RHR were excluded, as well as weeks with fewer than four RHR measurements and users with less than 100 total RHR measurements. Model 1 thresholds were used: participants were over the 
threshold for any given week if they had a sleep time that was greater than 0·5 SD below their overall average and an RHR that was 0·5 SD above their overall average. (B) Measurements from 
186 656 users from all states were included. Measurements with missing wear time, wear time less than 1000 min/day, and missing RHR were excluded for this analysis. The sharp downwards spike in 
wear time in March, 2017, is the result of daylight saving time. RHR=resting heart rate.
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When modelling the change in ILI rates from one 
week to the next, the mchange models mostly showed 
statistical association with proportions of elevated 
weekly RHR and abnormal sleep across all states, for 
either the time-matched or lagged data, at either RHR 
threshold (table 3). Inspection of the cross-correlation 
between fitted and observed models showed the Fitbit 
data generally did not lead the ILI rate data—that is, 
changes in Fitbit data were not observed before changes 
in ILI rate data. Instead, it was more common that 
Fitbit changes occurred in the week of changes in ILI 
rates (time matched) or in the following week (1-week 
lag). This implies that the changes in Fitbit data 
occur during or after the changes in ILI rates, and 
are therefore less predictive at forecasting future ILI 
events.

Discussion
Improved characterisation of an individual’s average 
values through wearable sensors will allow us to better 
identify deviations that could indicate the incidence of 
acute disease states, such as cold and influenza infections. 
To our knowledge, this is the first study to evaluate the 
use of RHR and sleep data in a large population to predict 
real-time ILI rates at the state level. We saw significant 
improvements in our ability to predict influenza when 
incorporating the proportion of users with abnormal 
sleep and RHR values in our full mabs,H1 model and in our 
mchange model, as well as reduced prediction errors 
(appendix p 9). Currently, CDC ILI data are typically 
reported 1–3 weeks late and reported numbers are often 
revised months later. The ability to harness wearable 
device data at a large scale might help to improve 
objective, real-time estimates of ILI rates at a more local 
level, giving public health responders the ability to act 
quickly and precisely on suspected outbreaks.

When someone is unwell, their RHR increases, their 
total sleep is likely to increase, and their activity is likely 
to decline. However, an elevated amount of sleep or 
elevated RHR for one person might be a normal level 
for someone else. Consequently, tracking an individual’s 
physiological changes over time and comparing their 
values over time to their individual norm or average 
could be a means of identifying assaults to their health. 
Our findings also supported the benefit of using 
individual health metrics: in our models, we found 
higher correlations from our predicted values with CDC 
ILI rates when we used an individual’s SD above normal 
to identify abnormal values instead of using the same 
value above average across the entire population.

The impact of infections on an individual’s RHR has 
been documented in several studies. One study found ill 
participants had RHRs that were elevated by 2·02–4·66 SD 
above their normal measurements.16 A study that 
examined 27 young men with acute febrile infections 
found that heart rates increased by 8·5 bpm per every 1°C 
increase in temperature.11 Similarly, a study among 
children with acute infections found that heart rate rose 
by 9·9–14·1 bpm for every 1°C increase in temperature, 
with higher increases in younger children.17 These studies 
indicate that infections can increase heart rate, probably 
due to increased body temperature and inflammatory 
responses as the body fights off an infection.

Our mchange models were better at predicting change 
with a 1-week lag compared with a 1-week lead. It is 
possible that an ILI infection results in an elevated RHR 
for several weeks after initial infection. Previous studies 
have also indicated that an elevated heart rate can 
occur before symptom onset.16 Since influenza has an 
incubation period of 1–4 days, there is only a short 
opportunity to identify infections before symptom onset. 
However, since individuals with febrile respiratory illness 
typically seek care 3–8 days after symptom onset,18 it is 
conceivable that ILI cases could be identified via sensor 

Users Total 
measurements

Mean resting 
heart rate, bpm

Mean sleep 
time, h

Mean wear 
time, h

USA* 200 000 46 110 818 65·6 (8·4) 6·6 (1·9) 22·5 (1·6)

California 13 632 616 646 65·3 (7·6) 6·5 (0·9) 22·4 (0·7)

Texas 12 399 591 431 65·9 (7·8) 6·6 (0·8) 22·4 (0·6)

New York 7872 351 768 65·5 (7·7) 6·6 (0·9) 22·4 (0·7)

Illinois 7132 340 347 66·1 (7·8) 6·6 (0·9) 22·5 (0·6)

Pennsylvania 6214 286 257 66·0 (7·9) 6·6 (0·9) 22·4 (0·7)

Data are n or mean (SD). State data show population averages of individuals’ mean resting heart rate, sleep time, 
and wear time during entire study period, using data from the final dataset. bpm=beats per min. *Full dataset 
(before exclusions). Measurements taken from March 15, 2016, to March 1, 2018.

Table 2: Number of measurements and average resting heart rate, sleep time, and wear time for full 
dataset and top five states

Negative binomial model predicting ILI 
case counts

Linear regression model predicting 
weekly change in ILI rates

mnaive mabs,H0 mabs,H1 p value* mchange mchange  
(1-week lag)

mchange

(1-week lead)

Model 1 (lower RHR threshold)

California 0·92 0·73 0·97 <0·0001 0·62† 0·31† 0·32†

Texas 0·77 0·84 0·92 <0·0001 0·24† 0·22† 0·10

New York 0·33 0·79 0·84 <0·0001 0·15 0·20† −0·05

Illinois 0·72 0·80 0·92 <0·0001 0·35† 0·34† 0·16

Pennsylvania 0·48 0·78 0·89 <0·0001 0·27† 0·16 −0·11

Model 2 (higher RHR threshold)

California 0·90 0·73 0·96 <0·0001 0·66† 0·36† 0·28†

Texas 0·73 0·84 0·90 <0·0001 0·19 0·24† 0·04

New York 0·30 0·79 0·82 <0·0001 0·11 0·19† −0·06

Illinois 0·70 0·80 0·90 <0·0001 0·35† 0·42† 0·08

Pennsylvania 0·42 0·78 0·88 <0·0001 0·23† 0·24† −0·14

Individuals were classified as having a week with abnormal Fitbit data if their weekly average exceeded a given 
threshold: a sleep time that was longer than 0·5 SD below their overall average and an RHR that was either 0·5 SD 
(model 1) or 1·0 SD (model 2) above their overall average. Naive models included just Fitbit data. H0 models assumed 
the ILI case count was not affected by the proportion of users with abnormal Fitbit data, whereas H1 models assumed 
that it was. CDC=US Centers for Disease Control and Prevention. ILI=influenza-like illness.RHR=resting heart rate. 
*p value comparing H0 to H1 models. †Pearson correlations were significant (p<0·05).

Table 3: Pearson correlations comparing CDC ILI rates with predicted rates in naive, null, and full negative 
binomial models and comparing change in CDC ILI rates with change in Fitbit data with a 1-week lag and 
a 1-week lead
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data earlier than through traditional, clinic-based ILI 
surveillance. Early identification via our method might 
be more likely if rates were predicted at a daily, rather 
than weekly, rate.

Lack of sleep can be a marker of stress, which can also 
raise RHR. In our study, users were considered to have 
normal sleep values if their weekly sleep average was less 
than 0·5 SD below their overall sleep average, as nights 
of short sleep duration have been shown to result in 
elevated heart rate the following day.19,20 We found that 
our correlations improved slightly when we classified 
people as displaying normal values when they had 

low sleep. In the future, improved measurements of 
stress by wearable devices, either by detection of voice 
changes or galvanic skin response, could further improve 
our ability to identify other non-infectious causes of 
elevated RHR.

Previous models to predict ILI rates have mainly 
used International Classification of Diseases codes,21 
ILInet (CDC’s influenza database), Twitter, Google Flu 
Trends, Wikipedia, weather, crowd-sourced data, and 
school vacation schedule data.22 However, Twitter, Google 
Flu Trends, Wikipedia, and self-reported crowd-sourced 
data—and even ILInet—are all affected by outside factors 

Figure 3: Weekly CDC ILI rates, predicted ILI rates from the baseline mabs,H0 model, and predicted rates and 95% CIs for the mabs,H1 model, by state
Model 1 is used, with the lower heart rate cutoff. Data are from March 16, 2016, to March 1, 2018. CDC=Centers for Disease Control and Prevention. ILI=influenza-like illness. 
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such as media coverage of the influenza, with more of 
the so-called worried well seeking care or searching for 
information about influenza during epidemic periods. 
Use of sensor-based data would offer the first objective 
and real-time measurement of illness in a population 
that could potentially reduce the effect of overestimation 
during epidemics

By incorporating Fitbit data, we were able to improve 
ILI predictions at the state level. The predicted values 
from our mnaive model that just used the Fitbit variable 
with no lag indicate that this sensor-based method could 
potentially be useful on its own in local regions where ILI 
surveillance data might not be available. With greater 
volumes of data to analyse, this sensor-based surveillance 
method could be applied to more geographically refined 
areas in the future, such as county-level or city-level data.

Variation in individual characteristics can affect illness 
risk and physiological response to illness. In general, 
owners of wearable devices are usually wealthier than the 
general population, potentially making them less likely 
to have comorbidities that could make them more 
susceptible to severe infections. Additionally, these users 
might be more likely to get influenza vaccines or receive 
antivirals or other medications if they do get sick, which 
could reduce disease severity. A study that administered 
intravenous acetaminophen to critically ill febrile patients 
found that it significantly reduced their heart rate after 
2 h.23 Individuals with comorbidities, as well as young 
children and people older than 65 years, typically have 
more severe responses to influenza infections24,25 and 
could have higher heart rate responses. In the future, 
understanding the role of individual characteristics such 
as age, comorbidities, obesity, and sex on abnormal values 
will be important for improving ILI prediction using this 
method.

It is likely that non-influenza or even non-respiratory 
infections are also captured by our Fitbit variable, which 
predominately relies on elevated RHR. It is possible that 

different infections, or even different influenza strains, 
could result in different physiological responses, with 
varying changes of heart rate or length of elevation. 
For example, H3N2 typically causes more severe 
illness24,25 than other strains. Like the CDC, which 
identified higher rates of ILI for 2017–18, we also saw 
higher peaks of the proportion of users with elevated 
Fitbit data during this influenza season compared with 
the previous year. It is also possible that our algorithm 
could pick up less severe infections that would not 
necessarily be captured by traditional ILI surveillance, 
which requires a visit to a health-care provider. Future 
work to better understand typical heart rate responses to 
specific viral or bacterial infections or even different 
influenza subtypes could improve our ability to track 
infections.

Additionally, there are external factors, other than 
illness, that could influence a person’s RHR and sleep. 
It is possible that our model is capturing some seasonal 
trends in RHR from changes in activity, holidays, or 
weather, rather than changes that result from just 
influenza or cold infections. Winter holidays have been 
associated with changes in weight gain,26 social mixing, 
increases in health-care seeking, differences in surveil
lance reporting,27 and potentially changes in alcohol 
consumption and stress. These factors could increase 
susceptibility to infection and can also affect ILI 
surveillance. A study found that RHR is higher at very 
cold or hot temperatures28 and heart rate can also be 
elevated when someone is dehydrated, which could be 
more likely to happen during certain seasons. Additionally, 
people might be less active during colder, winter months, 
resulting in deconditioning and increased heart rate. 
Future prospective studies should attempt to measure and 
adjust for these external variables and link individual 
Fitbit data to reported symptoms or laboratory influenza 
confirmation.

Our data had several limitations, including no activity 
data, which is typically collected by Fitbit devices. 
An activity variable could have improved the predictive 
ability of our models by allowing us to control for seasonal 
fitness changes or more short-term activity changes that 
could result from an illness. Another limitation is that our 
weekly RHR averages might include both days when an 
individual is sick and days when they are not sick, and 
therefore might be calculated using both normal and 
abnormal RHR and sleep measurements. Consequently, 
this could result in underestimation of illness by lowering 
the weekly averages. Additionally, sleep measuring devices 
have been found to have low accuracy.29 However, accuracy 
of devices will continue to improve as technology evolves.

Every year, up to 650 000 people die from influenza, 
globally.30 Quick detection of increases in ILI, indicating 
potential influenza epidemics, is key to early initiation of 
important non-pharmaceutical (eg, staying home when 
sick or handwashing) and pharmaceutical interventions 
(deploying antivirals and vaccines) that can help to prevent 

Negative binomial model predicting ILI 
case counts

Linear regression model predicting 
weekly change in ILI rates

mnaive mabs,H0 mabs,H1 p value* mchange mchange 
(1-week lag)

mchange

(1-week lead)

California 0·91 0·61 0·97 <0·0001 0·71† 0·32† 0·33†

Texas 0·72 0·79 0·89 <0·0001 0·27† 0·20 0·11

New York 0·31 0·71 0·79 <0·0001 0·15 0·21 −0·07

Illinois 0·61 0·71 0·88 <0·0001 0·42† 0·37† 0·13

Pennsylvania 0·34 0·71 0·85 <0·0001 0·29† 0·16 −0·11

Influenza season is defined as week 40 to week 20 in the following year. Individuals were classified as having a week 
with abnormal Fitbit data if their weekly average exceeded a given threshold: a sleep time that was longer than 0·5 SD 
below their overall average and an RHR that was 0·5 SD (model 1) above their overall average. Naive models included 
just Fitbit data. H0 models assumed the ILI case count was not affected by the proportion of users with abnormal Fitbit 
data, whereas H1 models assumed that it was. CDC=US Centers for Disease Control and Prevention. ILI=influenza-like 
illness. RHR=resting heart rate. *p value comparing H0 to H1 models. †Pearson correlations were significant (p<0·05).

Table 4: Pearson correlations from model 1 restricted to influenza season only comparing CDC ILI rates 
with predicted rates in naive, null, and full negative binomial models and comparing change in CDC ILI 
rates with change in Fitbit data with a 1-week lag and a 1-week lead
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further spread and infection in the most susceptible 
populations. This study shows that using RHR and other 
metrics from wearables has the potential to improve real-
time ILI surveillance. New wearables that include 
continuous sensors for temperature, blood pressure, 
pulse oximetry, ECG, or even cough recognition31,32 are 
likely to further improve our ability to identify population 
and even individual-level influenza activity. In the future, 
with access to real-time data from these devices, it might 
be possible to identify ILI rates on a daily, instead of 
weekly, basis, providing even more timely surveillance. As 
these devices become more ubiquitous, this sensor-based 
surveillance technique could even be applied at a more 
global level where surveillance sites and laboratories are 
not always available.
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