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The novel coronavirus disease 2019 (COVID-19) epidemic 
caused by SARS-CoV-2 began in Wuhan City, China in De-
cember 2019 and quickly spread globally, with 2,063,161 cases 
reported in 185 countries/regions as of April 16, 2020 (1). A 
total of 82,692 cases of COVID-19, including 4,632 deaths, 
have been reported in mainland China, including 50,333 
cases in Wuhan City and 628 cases in Shanghai City (2). The 
epidemic in Wuhan and in the rest of China subsided after 
implementation of strict containment measures and move-
ment restrictions, with recent cases originating from travel 
(3). However, key questions remain about the age profile of 
susceptibility to infection, how social distancing alters age-
specific contact patterns, and how these factors interact to 
affect transmission. These questions are relevant to the 
choice of control policies for governments and policy makers 
around the world. In this study, we evaluate changes in mix-
ing patterns linked to social distancing by collecting contact 
data in the midst of the epidemic in Wuhan and Shanghai. 
We also estimate age differences in susceptibility to infection 
based on contact tracing data gathered by the Hunan Provin-
cial Center for Disease Control and Prevention (CDC), China. 
Based on these empirical data, we develop a mathematical 
disease transmission model to disentangle how transmission 
is affected by age differences in the biology of COVID-19 in-
fection and altered mixing patterns due to social distancing. 

Additionally, we project the impact of social distancing and 
school closure on COVID-19 transmission. 

To estimate changes in age-mixing patterns associated 
with COVID-19 interventions, we performed contact surveys 
in two cities: Wuhan, the epicenter of the outbreak, and 
Shanghai, one of the largest and most densely populated cit-
ies in southeast China. Shanghai experienced extensive im-
portation of COVID-19 cases from Wuhan as well as local 
transmission (4). The surveys were conducted from February 
1, 2020 to February 10, 2020, as transmission of COVID-19 
peaked across China and stringent interventions were put in 
place. Participants in Wuhan were asked to complete a ques-
tionnaire describing their contact behavior (5, 6) on two dif-
ferent days: i) a regular weekday between December 24, 2019 
and December 30, 2019, before the COVID-19 outbreak was 
officially recognized by the Wuhan Municipal Health Com-
mission (used as baseline); and ii) the day before the inter-
view (outbreak period). Participants in Shanghai were asked 
to complete the same questionnaire used for Wuhan, but only 
reported contacts for the outbreak period. For the baseline 
period in Shanghai, we relied on a survey conducted in 2017-
2018 following the same design (7). In these surveys, a contact 
was defined as either a two-way conversation involving three 
or more words in the physical presence of another person, or 
a direct physical contact (e.g., a handshake). Details are given 
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in the supplementary materials (sections 1 and 2). 
We analyzed a total of 1,245 contacts reported by 636 

study participants in Wuhan, and 1,296 contacts reported by 
557 participants in Shanghai. In Wuhan, the average daily 
number of contacts per participant was significantly reduced 
from 14.6 for the baseline period (weighted mean contacts by 
age structure: 14.0) to 2.0 for the outbreak period (weighted 
mean contacts by age structure: 1.9) (p<0.001). The reduction 
in contacts was significant for all stratifications by sex, age 
group, type of profession, and household size (Table 1). A 
larger reduction was observed in Shanghai, where the aver-
age daily number of contacts declined from 18.8 (weighted 
mean contacts by age structure: 19.8) to 2.3 (weighted mean 
contacts by age structure: 2.1). Although an average individ-
ual in Shanghai reported more contacts than one in Wuhan 
on a regular weekday, this difference essentially disappeared 
during the COVID-19 outbreak period. A similar decrease in 
the number of contacts was found in the UK during the 
COVID-19 lockdown period (8). 

The typical features of age-mixing patterns (6, 7) emerge 
in Wuhan and Shanghai when we consider the baseline pe-
riod (Fig. 1, A and D). These features can be illustrated in the 
form of age-stratified contact matrices (provided as ready-to-
use tables in the supplementary materials, section 3.6), where 
each cell represents the average number of contacts that an 
individual has with other individuals, stratified by age 
groups. The bottom left corner of the matrix, corresponding 
to contacts between school-age children, is where the largest 
number of contacts is recorded. The contribution of contacts 
in the workplace is visible in the central part of the matrix, 
while the three diagonals (from bottom left to top right) rep-
resent contacts between household members. In contrast, for 
the outbreak period where strict social distancing policies 
were in place, much of the above-mentioned features disap-
pears, essentially leaving the sole contribution of household 
mixing (Fig. 1, B and E). In particular, assortative contacts 
between school-age individuals are fully removed, as illus-
trated by differencing baseline and outbreak matrices (Fig. 1, 
C and F). Overall, contacts during the outbreak mostly oc-
curred at home with household members (94.1% in Wuhan 
and 78.5% in Shanghai). Thus, the outbreak contact matrix 
nearly coincides with the within-household contact matrix in 
both study sites and the pattern of assortativity by age ob-
served for regular days almost entirely disappears (see sup-
plementary materials, section 3.6). These findings are 
consistent with trends in within-city mobility data, which in-
dicate an 86.9% drop in Wuhan and 74.5% in Shanghai be-
tween early January and early February (see supplementary 
materials, section 4). Such a large decrease in internal mobil-
ity is consistent with most of contacts occurring in the house-
hold during the outbreak period. Of note, the strict social 
distancing measures implemented in Wuhan and Shanghai 

did not entirely zero out contacts in the workplace, as essen-
tial workers continued to perform their activities (as ob-
served in our data, see supplementary materials, section 3.5). 

The estimated mixing patterns are based on self-reported 
contacts that can thus be affected by various biases. In par-
ticular, reported contacts for the baseline period in Wuhan 
may be prone to recall bias since contacts were assessed ret-
rospectively. Further, due to retrospective nature of the base-
line survey in Wuhan, we were unable to account for the 
lower number of contacts during weekends. The more com-
plete data from Shanghai did not suffer recall bias and al-
lowed us to weight contacts for weekdays and weekends – 
sensitivity analyses suggest that this has little impact on re-
sults (supplementary materials, section 8.3). Another possible 
bias is that survey participants may have felt pressure to min-
imize reported contacts occurring during the outbreak, given 
that social distancing was in place and strictly enforced by 
the government, even if the anonymity and confidentiality of 
the survey were emphasized. However, results are robust to 
inflating reported contacts outside of the home several fold, 
suggesting that these compliance and social acceptability bi-
ases linked to the outbreak period do not affect our main 
findings (supplementary materials, section 8.2). Another ca-
veat is that in parallel to population-level social distancing 
measures, case-based interventions were implemented and 
could have affect contacts, including rapid isolation of con-
firmed and suspected cases, and quarantine of close contacts 
for 14 days. Only a small portion of the population in the two 
study sites was affected by contact tracing and quarantine, 
however, thus having little to no effect on average contact 
patterns in the general population. 

Next, to understand the interplay between social distanc-
ing interventions, changes in human mixing patterns, and 
outbreak dynamics, we need to consider potential age differ-
ences in susceptibility to infection. This is currently a topic of 
debate, as little information on the age profile of asympto-
matic cases is available (9, 10). To this aim, we analyzed 
COVID-19 contact tracing information gleaned from detailed 
epidemiological field investigations conducted by the Hunan 
CDC (supplementary materials, section 5). Briefly, all close 
contacts of COVID-19 cases reported in Hunan province were 
placed under medical observation for 14 days and were tested 
using real-time RT-PCR. Those who tested positive were con-
sidered as SARS-CoV-2 infections. We estimated the odd ra-
tios (OR) for a contact of a certain age group to be infected, 
relative to a reference age group. We performed generalized 
linear mixed model regression to account for clustering and 
potential correlation structure of contacts exposed to the 
same index case (e.g., in the household). We included age 
group and gender of a contact, type of contact, and whether 
the contact traveled to Hubei/Wuhan as regression covariates 
(see supplementary materials, section 5). We found that 
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susceptibility to SARS-CoV2 infection increased with age. 
Young individuals (aged 0-14 years) had a lower risk of infec-
tion than individual aged 15-64 years [OR=0.34 (95%CI: 0.24-
0.49), p-value<0.0001]. In contrast, older individuals aged 65 
years and over had a higher risk of infection than adults 15-
64 years [OR=1.47 (95%CI: 1.12-1.92), p-value=0.005]. These 
findings are in contrast with a previous study in Shenzhen, 
where susceptibility to infection did not change with age (9). 

Next, we explore how our data can inform control strate-
gies for COVID-19. A key parameter regulating the dynamics 
of an epidemic is the basic reproduction number (R0), which 
corresponds to the average number of secondary cases gener-
ated by an index case in a fully susceptible population. We 
estimated the impact of interventions on R0, relying on our 
age-specific estimates of susceptibility to infection and con-
tact patterns before and during interventions. We used the 
next generation matrix approach to quantify changes in R0 
(11) (supplementary materials, section 6). Additionally, to il-
lustrate the impact of age-mixing patterns on the dynamics 
of the epidemic, we developed a simple SIR model of SARS-
CoV-2 transmission (supplementary materials, section 6). In 
the model, the population is divided into three epidemiolog-
ical categories: susceptible, infectious, and removed (either 
recovered or deceased individuals), stratified by 14 age 
groups. Susceptible individuals can become infectious after 
contact with an infectious individual according to the esti-
mated age-specific susceptibility to infection. The rate at 
which contacts occur is determined by the estimated mixing 
patterns of each age group. The mean time interval between 
two consecutive generations of cases was taken to be 5.1 days, 
assuming it aligns with the mean of the serial interval re-
ported by Zhang et al. (3). 

In the early phases of COVID-19 spread in Wuhan, before 
interventions were put in place, R0 values were estimated to 
range between 2.0 and 3.5 (12–18). In this analysis, we ex-
tended this range from 1 to 4 for the baseline period (i.e., be-
fore interventions). We find that the considerable changes of 
mixing patterns observed in Wuhan and Shanghai during the 
social distancing period led to a drastic decrease in R0 (Fig. 
2). When we consider contact matrices representing the out-
break period, keeping the same baseline disease transmissi-
bility as in the pre-intervention period, the reproductive 
number drops well below the epidemic threshold in Wuhan 
(Fig. 2A) and Shanghai (Fig. 2B). This finding is robust to re-
laxing assumptions about age differences in susceptibility to 
infection; the epidemic is still well controlled if SARS-CoV-2 
infection is assumed to be equally likely in all age groups (Fig. 
2, A and B). We also performed sensitivity analyses regarding 
possible recall and compliance biases of self-reported con-
tacts as well as the definition of contact (i.e., considering only 
contacts lasting more than 5 min). The results are consistent 
with those reported here (see supplementary materials, 

section 8). 
In an uncontrolled epidemic (without intervention 

measures, travel restrictions, or spontaneous behavioral re-
sponses of the population), and for R0 in the range 2-3, we 
estimate the mean infection attack rate to be in the range 
53%-92% after a year of SARS-CoV-2 circulation, with slight 
variation between Wuhan (Fig. 2C) and Shanghai (Fig. 2D). 
These estimates should be considered as an upper bound of 
the infection attack rate as they are based on a compart-
mental model that does not account for high clustering of 
contacts (e.g., repeated contacts among household members). 
If we consider a scenario where social distancing measures 
are implemented early on, as the new virus emerges, the es-
timated R0 remains under the epidemic threshold and thus 
the epidemic cannot take off in either location. Furthermore, 
we estimate that the magnitude of interventions imple-
mented in Wuhan and Shanghai would have been enough to 
block transmission for an R0 before the interventions up to 
~6 in Wuhan and ~7.8 in Shanghai. 

Next, we use the model to estimate the impact of preemp-
tive mass school closure. We considered two different contact 
pattern scenarios, based on data from Shanghai: contacts es-
timated during vacations period (7) and contacts estimated 
during regular weekdays, after all contacts occurring in 
school settings have been removed (7). Both scenarios repre-
sent a simplification of a school closure strategy. In fact, 
school closures in response to the COVID-19 pandemic in 
China have entailed interruption of all educational on-site 
services. However, mixing patterns measured during school 
vacations indicate that a fraction of children still attend ad-
ditional educational activities as typical in Chinese cities. On 
the other hand, when removing all contacts in the school set-
ting, we do not consider potential trickle down effects on the 
mixing patterns of other age groups; for instance, parents 
may need to leave work to take care of school-age children. 
Our modeling approach indicates that limiting contact pat-
terns to those observed during vacations would interrupt 
transmission for baseline R0 up to 1.5 (Fig. 3, A and C). Re-
moving all school contacts would do the same for baseline R0 
up to 1.2. If we apply these interventions to a COVID-19 sce-
nario, assuming a baseline R0 of 2 - 3.5, we can achieve a no-
ticeable decrease in infection attack rate and peak incidence, 
and a delay in the epidemic, but transmission is not inter-
rupted (Fig. 3, B and D). For instance, for baseline R0=2.5 and 
assuming a vacation mixing pattern, the mean peak daily in-
cidence is reduced by about 64%. In the corresponding sce-
nario where school contacts are removed, we estimate a 
reduction of about 42%. Overall, school-based closure policies 
are not sufficient to entirely prevent a COVID-19 outbreak, 
but they can impact disease dynamics, and hence hospital 
surge capacity. It is important to stress that individuals aged 
5-19 years in Shanghai represent 9.5% of the population (19), 
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markedly lower than the mean in China [16.8% (19)] and 
other countries [including Western countries; e.g., 19.7% in 
the US (20)]. 

The results of this study should be considered in the light 
of the following limitations. In our simulation model, we es-
timated the effect of social distancing alone; combining social 
distancing with other interventions would have a synergistic 
effect to even further reduce transmission. It is likely that 
population wide social distancing, case-based strategies, and 
decontamination efforts, all contributed to achieve control in 
Wuhan and Shanghai, and their effect is difficult to separate 
out in retrospective observational studies. Our estimates of 
age differences in susceptibility to infection are based on ac-
tive testing of 7,375 contacts of 136 confirmed index cases. 
These data suffer from the usual difficulties inherent to the 
reconstruction of epidemiological links and detection of in-
dex cases. Contact data are useful but seroepidemiology stud-
ies will be essential to fully resolve population susceptibility 
profiles to SARS-CoV-2 infection and disease. While the age 
patterns of contacts were similar in the two study locations 
during the COVID-19 outbreak period, these patterns may not 
be fully representative of other locations in China and 
abroad, where social distancing measures may differ. As reli-
able estimates of the contribution of asymptomatic SARS-
CoV-2 infections to transmission are still lacking, we did not 
explicitly model differences between symptomatic and 
asymptomatic individuals. We considered a serial interval of 
5.1 days (3), based on a prior estimate from China, at a time 
when case-based and contact tracing interventions measures 
were in place, which tends to shorten the interval between 
successive cases. However, this choice does not affect the es-
timated changes in reproduction number between the base-
line and outbreak periods. Modeling results may 
underestimate the effect of social distancing interventions as 
our results concentrate on number of contacts and ignore the 
type of social interactions (e.g., increased distance between 
individuals while in contact, or use of face mask), which may 
have changed due increased awareness of the population (21, 
22). Finally, it is worth noting that our school closure simu-
lations are not meant to formulate a full intervention strat-
egy, which would require identification of epidemic triggers 
to initiate closures and evaluation of different durations of 
intervention (6). Nonetheless, our modeling exercise provides 
an indication of the possible impact of a nation-wide preemp-
tive strategy on the infection attack rate and peak incidence. 
To generalize these findings to other contexts, location-spe-
cific age-mixing patterns and population structures should be 
considered. Most importantly perhaps, strict lockdown strat-
egies of the kind implemented in Wuhan, Shanghai, and in 
other regions of the world are extremely disruptive economi-
cally and mentally, and more targeted approaches to block 
transmission are preferable in the long run. We do not 

necessarily endorse blunt lockdown policies here; merely we 
describe their impact on COVID-19 transmission based on the 
Chinese experience. 

Our study provides evidence that the interventions put in 
place in Wuhan and Shanghai, and the resulting changes in 
human behavior, drastically decreased daily contacts, essen-
tially reducing them to household interactions. This leads to 
a dramatic reduction of SARS-CoV-2 transmission. As lock-
down measures are put in place in other locations, human 
mixing patterns in the outbreak period could be captured by 
data on within-household contacts, which are available for 
several countries around the world (5–7, 23–25). Moving for-
ward, it will be particularly important to design targeted 
strategies for long-term control of COVID-19, including 
school- and work-based control strategies, along with large 
scale testing and contact tracing (26–28). Research should 
concentrate on refining age-specific estimates of susceptibil-
ity to infection, disease, and infectiousness, which are instru-
mental to evaluating the impact of these strategies. 
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Fig. 1. Contact matrices by age. (A) Baseline period contact matrix for Wuhan (regular weekday only). Each 
cell of the matrix represents the mean number of contacts that an individual in a given age group has with 
other individuals, stratified by age groups. The color intensity represents the number of contacts. To 
construct the matrix we performed bootstrap sampling with replacement of survey participants weighted by 
the age distribution of the actual population of Wuhan. Every cell of the matrix represents an average over 
100 bootstrapped realizations. (B) Same as (A), but for the outbreak contact matrix for Wuhan.  
(C) Difference between the baseline period contact matrix and the outbreak contact matrix in Wuhan.  
(D) Same as (A), but for Shanghai. (E and F) Same as (B) and (C), but for Shanghai. 
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Fig. 2. Effect of contact patterns on the epidemic spread. (A) Estimated R0 during the outbreak (mean and 
95%CI), as a function of baseline R0 (i.e., that derived by using the contact matrix estimated for the baseline 
period). The figure refers to Wuhan and include both the scenario accounting for the estimated susceptibility 
to infection by age and assuming that all individuals are equally susceptible to infection. The distribution of 
the transmission rate is estimated through the next generation matrix approach by using 100 bootstrapped 
contact matrices for the baseline period in order to obtain the desired R0 values. We then use the estimate 
distribution of the transmission rate the bootstrapped outbreak contact matrices to estimate R0 for the 
outbreak period. The 95% confidence intervals account for the uncertainty on the distribution of the 
transmission rate, mixing patterns, and susceptibility to infection by age. (B) As (A), but for Shanghai.  
(C) Infection attack rate one year after the initial case of COVID-19 (mean and 95%CI) as a function of the 
baseline R0. The estimates are by simulating the SIR transmission model (see supplementary materials) 
using the contact matrix for the baseline period and considering the estimated susceptibility to infection by 
age and assuming that all individuals are equally susceptible to infection. The 95% confidence intervals 
account for the uncertainty on the mixing patterns and susceptibility to infection by age. (D) As (C), but for 
Shanghai. 
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Fig. 3. Effect of limiting school contacts on the epidemic spread. (A) Estimated R0 during the outbreak 
(mean and 95%CI), as a function of baseline R0 (i.e., that derived by using the contact matrix estimated for 
the baseline period). The figure refers to Shanghai and the scenario accounting for the estimated 
susceptibility to infection by age. Three contact patterns are considered: i) as estimated during the COVID-
19 outbreak, ii) as estimated during school vacations (7) and iii) as estimated for the baseline period, but 
suppressing all contacts at school. (B) Daily incidence of new SARS-CoV-2 infections (mean and 95%CI) as 
estimated by the SIR model assuming age-specific susceptibility to infection (see supplementary materials). 
Three mixing patterns are considered: i) as estimated for the baseline period, ii) as estimated during school 
vacations (7) and iii) as estimated for the baseline period, but suppressing all contacts at school. The inset 
shows the infection attack rate one year after the introduction of the first COVID-19 case (mean and 95%CI). 
(C) As (A), but assuming equal susceptibility to infection by age. (D) As (B), but assuming equal susceptibility 
to infection by age. 
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Table 1. Number of contacts by demographic characteristics and location. 
 

Characteristics 

Wuhan Shanghai 

Baseline period COVID-19 Outbreak 

Differenceb 

Baseline period COVID-19 Outbreak 

Differenceb 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

Overall 
624 

(100.0) 
14.6 

(12.9, 16.3) 
627 

(100.0) 
2 

(1.9, 2.1) 
12.6*** 

965 
(100.0) 

18.8 
(17.8, 19.8) 

557 
(100.0) 

2.3 
(2, 2.8) 

16.4*** 

Sex 
 

 Male 
300 

(48.1) 
14.5 

(12.2, 17.1) 
301 
(48) 

1.8 
(1.7, 2) 

12.6*** 
474 

(49.1) 
19 

(16.9, 21) 
286 

(51.3) 
2.1 

(1.9, 2.4) 
16.9*** 

 Female 
324 

(51.9) 
14.7 

(12.5, 17.1) 
326 
(52) 

2.1 
(2, 2.3) 

12.5*** 
491 

(50.9) 
18.5 

(16.8, 20.4) 
271 

(48.7) 
2.6 

(2.1, 3.6) 
16*** 

Age group 
 

 0-6 y 12 
(1.9) 

8.6 
(3.4, 17.4) 

12 
(1.9) 

2.2 
(1.7, 2.8) 

6.4*** 88 
(9.1) 

11.6 
(9.2, 14.3) 

14 
(2.5) 

1.9 
(1.7, 2.2) 

9.7*** 

 7-19 y 
79 

(12.7) 
16.2 

(12.7, 19.6) 
79 

(12.6) 
2.1 

(2, 2.2) 
14.1*** 

141 
(14.6) 

27 
(23.1, 30.7) 

55 
(9.9) 

2.6 
(2, 3.4) 

24.5*** 

 20-39 y 
254 

(40.7) 
15.3 

(12.8, 18) 
256 

(40.8) 
2.1 

(1.9, 2.2) 
13.2*** 

236 
(24.5) 

22.4 
(19.8, 25.9) 

254 
(45.6) 

2.2 
(2, 2.5) 

20.2*** 
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Characteristics 

Wuhan Shanghai 

Baseline period COVID-19 Outbreak 

Differenceb 

Baseline period COVID-19 Outbreak 

Differenceb 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

 40-59 y 
221 

(35.4) 
13.8 

(11.4, 16.7) 
220 

(35.1) 
2 

(1.8, 2.2) 
11.8*** 

233 
(24.1) 

19.9 
(17.7, 23.3) 

160 
(28.7) 

2.8 
(2, 4.1) 

17.1*** 

 ≥60 y 
58 

(9.3) 
13.9 

(7.9, 20.7) 
60 

(9.6) 
1.4 

(1.2, 1.7) 
11.6*** 

267 
(27.7) 

12.6 
(10.8, 14.7) 

74 
(13.3) 

1.6 
(1.3, 1.8) 

11*** 

Type of profession 

 Pre-school 
12 

(1.9) 
8.6 

(3.4, 17.4) 
12 

(1.9) 
2.2 

(1.7, 2.8) 
6.4*** 

79 
(8.2) 

10.4 
(8, 13.3) 

14 
(2.5) 

1.9 
(1.7, 2.1) 

8.5*** 

 Student 
107 

(17.1) 
14.6 

(11.4, 18.2) 
107 

(17.1) 
2.1 

(2, 2.3) 
12.5*** 

173 
(17.9) 

26.2 
(23.1, 29.2) 

71 
(12.7) 

2.5 
(2, 3.4) 

23.7*** 

 Employed 
391 

(62.7) 
15.4 

(13.4, 17.4) 
390 

(62.2) 
2.1 

(1.9, 2.2) 
13.2*** 

400 
(41.5) 

22.5 
(20.7, 24.4) 

354 
(63.6) 

2.5 
(2.1, 3.2) 

20*** 

 Unemployed 
30 

(4.8) 
14.1 

(5.7, 24.2) 
31 

(4.9) 
1.8 

(1.4, 2.4) 
12.2*** 

29 
(3) 

14.5 
(7.8, 24.2) 

24 
(4.3) 

1.8 
(1.3, 2.4) 

12.6*** 

 Retired 
84 

(13.5) 
12.1 

(7.2, 17.4) 
87 

(13.9) 
1.5 

(1.3, 1.7) 
10.6*** 

278 
(28.8) 

11.8 
(10.2, 13.2) 

94 
(16.9) 

1.6 
(1.3, 1.8) 

10.2*** 
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Characteristics 

Wuhan Shanghai 

Baseline period COVID-19 Outbreak 

Differenceb 

Baseline period COVID-19 Outbreak 

Differenceb 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%)a 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

N 
(%) 

Mean 
(95% CIc) 

Household size 

 1 
45 

(7.2) 
10.5 

(5.3, 17.2) 
45 

(7.2) 
0.6 

(0.1, 1.5) 
9.9*** 

35 
(3.6) 

15.2 
(10.1, 21.1) 

61 
(11) 

0.3 
(0.1, 0.5) 

14.9*** 

 2 
73 

(11.7) 
12.6 

(8.2, 18.3) 
76 

(12.1) 
1.1 

(1, 1.2) 
11.5*** 

244 
(25.3) 

14.5 
(12.7, 16.7) 

138 
(24.8) 

1.4 
(1.1, 1.7) 

13.1*** 

 3 
282 

(45.2) 
14.8 

(12.8, 17.3) 
283 

(45.1) 
1.9 

(1.8, 2) 
13*** 

432 
(44.8) 

20.3 
(17.7, 22.4) 

216 
(38.8) 

2.2 
(2, 2.3) 

18.1*** 

 4 
133 

(21.3) 
11.9 

(9.3, 15) 
132 

(21.1) 
2.3 

(2.2, 2.5) 9.6*** 
117 

(12.1) 
20.3 

(16.5, 23.8) 
78 

(14) 
3 

(2.8, 3.3) 17.3*** 

 ≥5 
91 

(14.6) 
21.5 

(16.2, 27.3) 
91 

(14.5) 
3.2 

(2.9, 3.4) 17.8*** 
137 

(14.2) 
21.4 

(18.2, 27) 
64 

(11.5) 
5.9 

(4, 9.9) 15.5*** 

 
aCan differ from total sample size (n=636) as it also includes participants who had not recorded contacts during the baseline period or during the COVID-19 
outbreak. Note that reduced denominators indicate missing data. Percentages may not total 100 because of rounding. 
bDifference is calculated by the subtraction of the number of contacts during the outbreak from the number of contacts during the baseline period. P-values 
are taken from a negative binomial regression with a single binary variable distinguishing the baseline period from the outbreak. 
cThe 95% confidence interval on the mean are calculated by bootstrap sampling. 
*p<0.05, **p<0.01, ***p<0.001. 
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