
Precautionary breaks: planned, limited duration circuit

breaks to control the prevalence of COVID-19.
Matt J. Keeling1*, Glen Guyver-Fletcher1,2, Alex Holmes1,3, Louise Dyson1‡, Michael J. Tildesley1‡,
Edward M. Hill1‡, Graham F. Medley4

1 The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of
Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United
Kingdom.
2 Midlands Integrative Biosciences Training Partnership, School of Life Sciences, University of
Warwick, Coventry, CV4 7AL, United Kingdom.
3 Mathematics for Real World Systems Centre for Doctoral Training, Mathematics Institute,
University of Warwick, Coventry, CV4 7AL, United Kingdom.
4 London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London WC1E 7HT,
United Kingdom.

‡These authors contributed equally to this work.

* Corresponding Author. Email: M.J.Keeling@warwick.ac.uk

Abstract

The COVID-19 pandemic in the UK has been characterised by periods of exponential growth and
decline, as different non-pharmaceutical interventions (NPIs) are brought into play. During the early
uncontrolled phase of the outbreak (early March 2020) there was a period of prolonged exponential
growth with epidemiological observations such as hospitalisation doubling every 3-4 days (growth rate
r ≈ 0.2). The enforcement of strict lockdown measures led to a noticeable decline in all epidemic
quantities (r ≈ −0.06) that slowed during the summer as control measures were relaxed (r ≈ −0.02).
Since August, infections, hospitalisations and deaths have been rising (precise estimation of the cur-
rent growth rate is difficult due to extreme regional heterogeneity and temporal lags between the
different epidemiological observations) and various NPIs have been applied locally throughout the UK
in response.

Controlling any rise in infection is a compromise between public health and societal costs, with more
stringent NPIs reducing cases but damaging the economy and restricting freedoms. Currently, NPI
imposition is made in response to the epidemiological state, are of indefinite length and are often
imposed at short notice, greatly increasing the negative impact. An alternative approach is to consider
planned, limited duration periods of strict NPIs aiming to purposefully reduce prevalence before such
emergency NPIs are required. These “precautionary breaks” may offer a means of keeping control of
the epidemic, while their fixed duration and the forewarning may limit their society impact. Here, using
simple analysis and age-structured models matched to the unfolding UK epidemic, we investigate the
action of precautionary breaks. In particular we consider their impact on the prevalence of infection, as
well as the total number of predicted hospitalisations and deaths. We find that precautionary breaks
provide the biggest gains when the growth rate is low, but offer a much needed brake on increasing
infection when the growth rate is higher, potentially allowing other measures (such as contact tracing)
to regain control.
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1 Introduction 1

The novel coronavirus virus strain that arose in the Wuhan city in China in late 2019 has had a 2

dramatic effect on the lives of people worldwide. By 1st October, we had passed the grim milestone of 3

1 million deaths worldwide and over 30 million cases [1]. In the absence of disease specific treatments or 4

prophylactic measures, most countries have adopted social distancing measures (reducing the number 5

of potentially risky contacts) as a means of control [2]. The optimal level of non-pharmaceutical 6

interventions (NPIs) requires a careful balance between public health and economic needs, from which 7

it could be argued that the optimal strategy is one that minimises economic disruption while still 8

preventing exponential growth of infection [3]. 9

In the UK, the first cases of COVID-19 were reported on 31st January 2020 in the city of York. Cases 10

continued to be reported sporadically throughout February and by the end of the month guidance 11

was issued stating that travellers from the high-risk epidemic hotspots of Hubei province in China, 12

Iran and South Korea should self-isolate upon arrival in the UK. By mid-March, as the number of 13

cases clearly began to rise, there was advice against all non-essential travel and, over the coming 14

days, several social-distancing measures were introduced including the closing of schools, non-essential 15

shops, pubs and restaurants. This culminated in the introduction of a UK “lockdown”, announced on 16

the evening of 23rd March, whereby the public were asked to remain at home with four exceptions: 17

shopping for essentials; any medical emergency; for one form of exercise per day; and to travel to work 18

if absolutely necessary. By mid-April, these stringent mitigation strategies began to have a noticeable 19

effect, as the number of confirmed cases, hospitalisations and deaths as a result of the disease began 20

to decline[4, 5]. As the number of daily confirmed cases continued to decline during April, May and 21

into June[6], measures to ease lockdown restrictions began, with the re-opening of some non-essential 22

businesses and allowing small groups of individuals from different households to meet up outdoors, 23

whilst maintaining social distancing. This was followed by gradually re-opening primary schools in 24

England from 1st June and all non-essential retail outlets from 15th June. 25

The dynamics throughout the summer of 2020 were characterised by the emergence of hot-spots of 26

persistent infection and higher than average growth rates, with such areas facing additional local 27

controls. Notably, Leicester and the Greater Manchester conurbation were identified as regions where 28

the number of identified cases per hundred thousand had increased to high levels, while the infection 29

in many other areas was still in decline. By mid to late August, there was some evidence that the 30

national underlying growth rate had become positive [6], and by the end of September exponential 31

growth had returned in almost all regions [7, 8]. Like many countries, the UK is now attempting to 32

curtail growth by introducing stricter controls, but “lockdown” is very disruptive to multiple elements 33

of society [9, 10], especially given that restrictions are largely unpredictable to the local populous and 34

businesses. 35

One potential mechanism of regaining control is to introduce a short period of intense measures to 36

substantially reduce cases — this has been dubbed a ‘circuit breaker’ although “precautionary break” is 37

a more apposite name. It is hoped that by driving infections to a sufficiently low level, other measures 38

such as test-trace-and-isolate will have greater capacity to prevent the spread of infection [11]. In 39

common with other resource limited controls [12], we expect test-trace-and-isolate to be most effective 40

when the level of infection is relatively low [13]. Additionally, a short lockdown period would limit the 41

economic costs of such a measure. 42

In this paper, we consider the application of breaks to the UK, aligning a two-week period of intense 43

control to school half-terms in order to minimise educational disruption. We utilise both a simple 44

illustrative analysis and an age-structured model fitted to the UK data, to investigate the likely 45

impact of a break on the trajectory of infection and the subsequent numbers of hospitalised cases and 46

deaths. 47
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2 Simple Analysis 48

Under the simplifying assumption that without additional control measures cases will increase expo-
nentially at rate r(> 0), but during the period of the precautionary break cases will decrease at a rate
−s(< 0), we can develop a simple model for the dynamics:

I(t) =


I0 exp(rt) t ≤ Tstart

I0 exp(rTstart) exp(−s(t− Tstart) Tstart ≤ t ≤ Tend

I0 exp(rt) exp(−(r + s)(Tend − Tstart)) t ≥ Tend

where Tstart and Tend define the start and end dates of the breaks. From this analysis, we observed
two key effects of a short-term lockdown. Firstly, it causes a relative reduction in the level of infection
by a factor B = 1 − exp(−(r + s)(Tend − Tstart)), compared to not having the precautionary break.
In principle, this should translate into a similar reduction in the daily number of hospitalisations and
deaths - the two epidemiological measures of most concern. We can also conceptualise this reduction
as taking the epidemic back in time to when there were fewer cases; this temporal reset, TR, is given
by:

TR = (Tend − Tstart)
(

1 +
s

r

)
.

Taken together these two metrics B and TR imply that such breaks, unsurprisingly, have the greatest 49

impact when they are long in duration and lead to a rapid decline in cases (s large). The impact of 50

the uncontrolled growth rate, r, is more ambiguous. When r is large the impact of the break on the 51

level of infection is more pronounced as it prevents a period of high exponential growth. In contrast, 52

large r reduces the size of the temporal reset as it does not take many days of exponential growth to 53

cancel the decline expected during the break. 54

3 Age-structured model description 55

We now wish to increase the realism of the modelling framework to more accurately capture the impact 56

of such breaks on the number of hospitalisations and deaths as a result of infection, which requires an 57

age-structured model matched to the wealth of epidemiological data [14, 15]. Even though we have 58

dramatically increased the complexity of the model, the two simple metrics (B and TR) remain of key 59

interest. 60

The age-structured model and its matching to the UK data has been described in detail elsewhere [14, 61

15]. Here, for completeness, we provide a basic review of the main salient points. The model is an 62

ODE formulation based around SEIR-type dynamics, and incorporating five-year age classes. The 63

infection dynamics are modified to account for symptomatic and asymptomatic infection (dependent 64

on age), age-dependent susceptibility and reduced transmission from asymptomatic infections. The 65

model also includes additional structure to account for quarantining of identified cases and isolation 66

of their household. 67

The model is calibrated against different sources of epidemiological data including hospitalisations, 68

admission to ICU, deaths, age-structured serology from blood donors and the results of pillar 2 test- 69

ing [15]. This matching is done separately for the seven NHS regions in England (East of England, 70

London, Midlands, North East & Yorkshire, North West, South East and South West) and for the 71

three devolved nations (Northern Ireland, Scotland and Wales); although some parameters (such as 72

the relative transmission rate from asymptomatic infections) are universal. In particular, we highlight 73

that the historical and changing pattern of regulations, restrictions and behaviour in each region is 74

captured by a weekly rescaling of the transmission matrix. 75
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We consider two distinct forms of simulation. In the first, we tightly constrain the dynamics (by 76

rescaling the transmission matrix) to have a given growth rate r from 1st September, with the growth 77

rate being estimated by an eigenvector approach. During the 2-week break (24th October - 7th 78

November) we again rescale the transmission matrix to achieved the desired rate of decay −s, before 79

returning to the pre-break matrix. All simulations are performed using a single parameter set. 80

In the second set of simulations, we allow more regional heterogeneity by fully exploring the posterior 81

parameter estimates. We replicate a range of NPIs by multiple rescalings of the transmission matrix, 82

and set the behaviour in the break to coincide with regional estimates of transmission at the height 83

of the March/April lockdown. 84

4 Results 85

Fig. 1: Impact of a 2-week precautionary break during half-term on the infection dynamics. For
a range of assumed growth rates in September and October, we illustrate both the reduction in infection (B)
and the temporal reset (TR) of a break starting on 24th October. Each line corresponds to a different strength
of control during the two week break, which is linked to observed epidemic declines.

To illustrate the simple analytical behaviour in more detail, we pick a definitive case (Figure 1): a two- 86

week break from 24th October -7th November to coincide with school half-terms (thereby minimising 87

educational disruption). We consider the relative reduction B and the temporal reset TR across a 88

range of positive growth rates r, from 0.01 to 0.22, corresponding to the upper bound of the growth 89

in the March. We consider five different intensities of break (s = 0, 0.02, 0.045, 0.06 and 0.1) with the 90

first four aligning with different periods of control in the UK (August, June, May, April), and the 91

latter corresponding to the observed decline in continental Europe where the lockdown restrictions 92

were more intense. We find that, as shown earlier analytically, the greatest effects are found for 93

stricter controls during the precautionary break; lower intrinsic growth (r) outside of the break leads 94

to a longer temporal reset, whereas a higher growth rate is associated with a bigger relative decline in 95

infection. 96

For the age-structured model, we initially focus on the temporal dynamics over the period from August 97

to the end of the year (Figure 2). We chose four rates of decline during the break corresponding to 98

different rates observed in the UK under different lockdown measures (using the same colours as in 99

Figure 1). For comparison we also show the dynamics without a 2-week break, but including the 100

standard 1-week half term break for school children (black dashed line). We contrast the behaviour at 101

four different intrinsic growth rates for the period 1st September to 24th October (r ≈ 0.02, r ≈ 0.03, 102

r ≈ 0.05 and r ≈ 0.07, columns of Figure 2). Given the extra realism of the age-structured model, we 103

project not just the number of infections (top row), but the number of daily hospitalisations and deaths 104

(middle and bottom row respectively). We also give the total number of infections, hospitalisations 105

and deaths between 1st October and 1st January as numerical values. 106
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These results reflect the findings from the simple analytical framework, but provide greater clarity on 107

the impact of these breaks on the key epidemiological quantities of hospitalisations and deaths. Both 108

of these lag behind the changes in infection, and the drop in both quantities after the half-term break 109

is far smoother than is observed for infection. For all three measures, it is clear that the temporal reset 110

increases with the strength of controls during the break, but decreases with the growth rate; the reset 111

is also longer and more clearly defined for infection than for the lagged measures of hospitalisations 112

and deaths. Looking at the medium term impact of the break (as measured by the total number of 113

deaths between 1st October and 1st January), we observe that for low growth rates the strongest levels 114

of NPI during the break reduces deaths by approximately 29%. In contrast, when the growth is high 115

the reduction is approximately 49%. 116

Fig. 2: Impact of a 2-week precautionary break during half-term on the dynamics of the full
age-structured model. The columns are for four different underlying epidemiological growth rates( r ≈
0.02, 0.03, 0.05 and 0.07, while within each panel the colours correspond to different rates of decline during the
half-term break (dashed black, no-control s = −r; blue s = 0; green s = 0.02; purple s = 0.045; gold s = 0.06).
The top row shows the number of new infections in the UK, which experiences the most immediate impact of
the break; the middle row shows the number of daily hospitalised infections; while the lower row shows the daily
mortality.

The results of Figure 2 artificially constrain the dynamics to achieve fixed rates of growth and de- 117

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. .https://doi.org/10.1101/2020.10.13.20211813doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20211813
http://creativecommons.org/licenses/by-nc-nd/4.0/


cline. To consider the potential dynamics in more detail we chose 1000 samples from the posterior 118

distribution [15], for each region of the UK, and vary the level of NPIs to achieve a range of growth 119

rates (r). A two-week break is enacted on 24th October, with the rate of decline (−s) determined 120

by the maximal level of NPI over the full epidemic to date (as estimated in the posterior parameter 121

distribution); hence introducing far more variability into the process. We again looked at the temporal 122

reset (TR) defined as the time difference between the end of the break and the previous time when a 123

similar level of infection occurred. 124

The results of these replicates that include natural parameter and control uncertainty show remarkable 125

agreement with the simple analysis (depicted by the red line, Figure 3a). The exception is for the 126

very highest levels of considered growth rates (r > 0.07); allowing this level of increase since early 127

September leads to depletion of the susceptible population, which brings a greater temporal reset than 128

expected. However, allowing a growth rate of r > 0.07 (a doubling time of less than 10 days) for a 129

long period is not a viable public health option. We find a similar pattern when examining the relative 130

reduction in deaths; in keeping with simple theory there is a rise in the reduction that can be obtained 131

as the growth rate increases, but this again suffers from the non-linear effects of susceptible depletion 132

above r = 0.07. 133

Fig. 3: Impact of a 2-week precautionary break during half-term on the dynamics of the full
age-structured model. Each point is from the posterior parameter distribution, with the level of NPIs from
1st September onwards varied to generate different underlying growth rates. The decline during the break is the
maximum level of NPI at any time for the associated posterior parameter set. (a) shows the temporal reset that
captured the time gained by the break; the red line is the theoretical result from the simple theoretical model
based on the average rate of decline during the break across all replicates. (b) shows the relative reduction in
deaths between 1st October and 1st January.

5 Discussion 134

The pandemic of SARS-CoV-2, and the number of severe cases of COVID-19 worldwide, has necessi- 135

tated the adoption of a range of control measures in different countries. In the absence of a vaccine or 136

other medical approaches, control has had to rely on very disruptive non-pharmaceutical interventions. 137

In the UK, the implementation of such NPIs during the lockdown period (23rd March - 13th May) 138

reversed the nationally increasing hospitalisations and deaths (r ≈ 0.2) and led to a steady decline 139

(r ≈ −0.05) [4, 5]. The gradual relaxing of NPIs has generated a slowly increasing growth rate, which 140

we estimate became positive again (leading to exponential growth) in mid-August [7]. Against this 141

backdrop of rising cases, we have investigated the benefits of a planned 2-week precautionary break 142

(or ’circuit-break’), where strict rules are reapplied in an attempt to drive down cases before their 143
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imposition becomes necessary to prevent health system overload. Such breaks are not in themselves 144

long-term solutions, but may allow other methods that work best with low numbers of cases (such as 145

test-trace-and-isolate) to reassert control and they may be more sustainable than other NPI imposition 146

approaches. 147

Both simple analytical approaches and an age-structured model fit to a range of UK data show that 148

planned precautionary break could be highly effective short-term control measures. Compared to an 149

absence of such controls, precautionary breaks generate a reduction in infection, hospitalisations and 150

deaths, which is most pronounced when the growth rate is moderately high (doubling time of more 151

than 10 days). This reduction in infection can be interpreted as a temporal reset, taking the level 152

of infection back (in time) to a lower value, allowing greater opportunity for additional public health 153

measures to be enacted or take effect. 154

Unsurprisingly, breaks that generate the most stringent application of NPIs are associated with the 155

greatest immediate rates of declines and, as a consequence, the greatest public health benefits. There- 156

fore, the success of any action is highly contingent on the adherence of the populous to the recommen- 157

dations and rules; a break is only effective if there is an average increase in level of social distancing 158

across the country. We also consistently find that the optimal time for a break is always now; there 159

are no good epidemiological reasons to delay the break as this will simply push back any benefits 160

until later, leaving more time for additional cases to accumulate. We have focused on combining the 161

break with the school half-term holiday in October, but the same logic would apply to the Christmas 162

holidays (perhaps extending them for a week into 2021) or to the spring half-term. 163

Ultimately, such short-term precautionary breaks will only be effective if (i) their planned nature helps 164

to minimise the associated societal harms and economic losses, (ii) there is good compliance with the 165

measures across all regions and sections of society, and (iii) the reduction in cases is used to regain 166

control and bring the growth rate back below zero. 167
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