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Abstract
As SARS-CoV-2 is becoming endemic, a sustainable strategy to manage the pandemic is
needed, especially when facing a steep wave. We identified a metastable regime at low case
numbers, where test-trace-and-isolate (TTI) together with moderate contact reduction is
sufficient to control the spread. However, this control is lost once case numbers overwhelm
the limited TTI capacity. Beyond that tipping point, increasingly more infectious individuals
remain undetected, generating a self-accelerating spread. To reestablish control, a lockdown
(circuit breaker) has to strike a delicate balance between duration, stringency, and timeliness;
otherwise, lockdowns are ineffective, or their effect is soon lost. However, once reestablishing
control at low case numbers, no additional lockdowns are necessary. In the long-term,
immunity and large-scale testing will further facilitate the control of COVID-19.
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1 Introduction

As SARS-CoV-2 is becoming endemic and knowledge about its spreading is accumulated, it becomes clear
that neither global eradication nor herd immunity is achieved soon. Eradication is hindered by the world-
wide prevalence and by asymptomatic spreading. Reaching herd immunity without an effective vaccine
or medication would take several years and cost countless deaths, especially among the elderly. Moreover,
long-term effects (“long COVID") are surfacing [1–5]. Hence, we need long-term, sustainable strategies to
contain the spread of SARS-CoV-2. The common goal, especially in countries with an aging population,
should be to minimize the number of infections and, thereby, allow reliable planning for individuals and
the economy – while not constraining individuals’ number of contacts too much. Intuitively, a regime with
low case numbers would benefit not only public health and psychological well-being but likely also profits
economy [6,7].
The containment of SARS-CoV-2 is challenging: Many infections originate from asymptomatic or pre-
symptomatic cases [8], rendering mitigation measures difficult. Therefore, within test-trace-and-isolate (TTI)
strategies, mitigation effects achieved by symptomatic testing are restricted, but contact tracing can partially
prevent further transmissions from non-symptomatic individuals. Additional challenges are the potential
influx of SARS-CoV-2 infections brought in by travelers from abroad, imperfect quarantine, and limited
compliance. Last, countries’ capacity to perform test-trace-and-isolate is limited, which changes spreading
dynamics depending on case numbers levels. Understanding these dynamics is thus crucial for an informed
policy decisions.
We investigated how to harness test-trace-and-isolate (TTI) strategies in combination with moderate contact
reduction to control the pandemic at low case numbers. We found that the limited TTI capacity induces a
metastable regime of SARS-CoV-2 spread at low case numbers: In this regime, case numbers are only stable
under a certain threshold determined by TTI capacity and are otherwise unstable (Sec. 2.2). If stable, the
resulting level of case numbers depend on the influx of infections and the reduction of contacts (Sec. 2.3).
Next, we demonstrate that if the spread gets out of control nonetheless (as with the second wave in many
European countries), it leads to a self-accelerating increase of case numbers (Sec. 2.4). In this case, we show
how to design an efficient single circuit breaker or lockdown to reach low case numbers again, where TTI can
operate within its capacity and serves as an effective control measure (Sec 2.5). Our results indicate that a
few weeks with substantial contact reduction are typically sufficient to reach this low case numbers regime.
Once reached, contact restrictions can be loosened. However, if measures are lifted too quickly, or are not
implemented stringently enough, then the efforts and costs of such circuit breakers are soon lost, and a novel
reset becomes necessary. Last, we outline strategies for a long-term stable regime with moderate contact
reductions (Sec. 2.6) and discuss our theoretical results in view of the development of case numbers and the
mitigation policies of countries throughout the world.

2 Results

2.1 Model Overview

We developed an SEIR-type compartmental model [9–12] to investigate mitigation strategies and long-term
control for COVID-19 (for a graphical representation of the model see Fig. S1). In the model, we incorporated
the central challenges of SARS-CoV-2 mitigation: asymptomatic carriers of the virus, imperfect contact
tracing and quarantining, and delays in testing, tracing, and case-reporting [12]. Importantly, as case numbers
increase, available tests may not suffice to test all suspected cases, and the personnel at the health authorities
may become unable to trace further contacts. Thus, we modeled a limited test-trace-and-isolate (TTI)
capacity beyond which tests are performed at a lower rate, and no further contacts can be traced.
A central parameter in the model is the effective reduction of contagious contacts kt relative to pre-COVID-19.
More precisely, kt quantifies the reduction in (potentially) contagious contacts a person produces. This
reduction of contacts accounts for both healthy individuals and those infected who are not aware of being
infectious. Contributions are obviously from contact reduction, but also from enhanced hygiene, mandatory
face-mask policies, frequent ventilation of closed spaces, and shift to outside gatherings, among other
precautionary measures. As we assume that the latter measures are relatively fixed, direct contact reduction
remains the central free variable, which is also the one tuned during lockdowns. Thus, while we can only
estimate roughly how much each measure contributes to the overall contact reduction kt, we can still clearly
read off the model how strongly kt needs to be reduced in a lockdown or circuit breaker to regain stability
within just a few weeks – and to maintain stability afterward.

3



Towards a long-term control of COVID-19 at low case numbers

All model parameters are listed in Table S1. Epidemiological parameters are based on the available SARS-
CoV-2 literature [13–17], whereas parameters related to test-trace-and-isolate policies and lockdowns are
obtained from German and European situation reports. A interpretation of those parameters is discussed in
section 3.3. Our code is available at https://github.com/Priesemann-Group/covid19_research/tree/
master/circuit_breaker, and an interactive platform to explore alternative scenarios and parameters will
be soon available (in preparation, the link will be on GitHub once it is online).
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Figure 1: The dynamics of daily new case numbers depend on the balance between destabilizing and
stabilizing contributions, but also on the level of case numbers itself. Disease spread is destabilized by the
basic reproduction number R0 and the external influx of infections (and possibly seasonality). On the other hand,
the spread can stabilized by various contributions, including increased hygiene, test-trace-isolate strategies (TTI),
contact reduction, but also immunity. We investigated how specifically contact reduction k0 and limited TTI capacity
determine the stabilization of case numbers. (A) Assuming only mild contact reduction (k0 = 20 % compared to
pre-COVID), TTI is not sufficient to prevent increasing case numbers — even when TTI capacity is still available.
Hence, case numbers are increasing. (B) At moderate contact reduction (k0 = 40 %), a metastable state emerges
(bold horizontal arrows) to which case numbers converge — if case numbers do not exceed the TTI capacity. However,
destabilizing events (as, e.g., a sudden influx of infections), can push a previously stable system above the TTI
capacity and lead to an uncontrolled spread (black line as an example). (C) Assuming heavy contact reduction
(k0 = 60 %), case numbers decrease even if the TTI capacity is exceeded. (*) Case numbers decrease until they reach
a low equilibrium point (bold horizontal arrows); due to a constant small external influx of cases (Φ = 1 case/day),
the equilibrium is not at zero.

2.2 A metastable regime of COVID-19 at low case numbers can be achieved with moderate
contact reduction.

In addition to the two classical scenarios of a pandemic — an eradication or a general spreading throughout
the population, potentially with subsequent immunity — our model displays a metastable regime, where
case numbers very early on converge reliably to low values (Fig. 1). The precise level of case numbers
depends on various contributions, such as the basic reproduction number R0, the influx of new infections Φt
and seasonality, but also precautionary measures (hygiene, masks, ventilation), test-trace-and-isolate (TTI)
strategies, and contact reduction. When considered jointly, all the contributions give rise to the effective
reproduction number R̂eff

t , which can be significantly lower than the basic reproduction number (R0 ≈ 3.3 for
SARS-CoV-2 [14,18–20]).

We focused on how contact reduction kt and the number of daily new cases N̂obs together affect the stability
of the system. Contact reduction can be achieved effectively by non-pharmaceutical interventions (NPIs); it
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is the main control parameter that determines whether the system is unstable, metastable, or stable (Fig. 1).
We quantify this effect by the factor kt, the reduction of contagious contacts compared to the pre-COVID-19
times, which models the decrease in viral transmission via behavior. If the contact reduction kt is mild, case
numbers still grow exponentially, and the system is unstable (Fig. 1 A). In contrast, if the contact reduction
is strong and (together with hygiene and TTI) outweighs the drive by the basic reproduction number, then
case numbers decrease to an equilibrium at very low case numbers, and the system is stable (Fig. 1 C). If the
contact reduction is moderate (and just-about equilibrates the drive by the basic reproduction number), we
find a metastable regime: The spread is stabilized if overall case numbers are sufficiently low to enable fast
and efficient TTI (Fig. 1 B). However, if the limited TTI capacity is overwhelmed, TTI starts to miss cases
and its contribution to reducing case numbers is weakened. This presents a tipping point, beyond which the
spread self-accelerates [12].

2.3 The equilibrium value of daily new infections depends on the influx and the reduction
of contagious contacts.

When contacts are sufficiently reduced, the system is stable or metastable, and case numbers can reach
an equilibrium. If in equilibrium, the precise level of daily new infections N̂obs

∞ directly depends on the
reduction of contagious contacts kt and the external influx of new cases Φt (Fig. 2). The N̂obs

∞ increases
steeply (it diverges) when the contact reduction kt approaches the tipping point to unstable dynamics. Such a
divergence near a critical point kcrit

t is a general feature of continuous transitions between stable and unstable
dynamics [21, 22]. As a rule of thumb, in a very simplified model, N̂obs

∞ would be proportional to Φt and
diverge when kt approaches its critical value kcrit

t from above: N̂obs
∞ ∝ Φt/(kt − kcrit

t ) [22].
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Figure 2: In the stable and metastable regimes, daily new cases approach an equilibrium value N̂obs
∞

that depends on contact reduction kt and external influx of new cases Φt. (A) The equilibrium value N̂obs
∞

increases steeply with lower kt and then destabilizes when surpassing a critical value kcrit
t . Thus, contact reduction

has to be sufficiently strong to keep the case numbers within TTI capacity. A certain degree of external influx Φt can
be compensated, but in general, Φt can put stability at risk. Φt = 1 one daily new case per million is our default
parameter for the influx. (B) The N̂obs

∞ is below 10 for a large fraction of parameter combinations, kt and Φt, thus
well below the capacity limit of TTI. (C) The critical value kcrit

t , which marks the transition between stable and
(meta)stable spread; thus kcrit

t displays the minimal contact reduction that is required to control the spread (and
stabilize case numbers). If case numbers are below the TTI capacity limit, a contact reduction of at least kcrit

t = 39 %
is required for stabilization (blue). If case numbers, however, are above the TTI imit, stronger contact reduction is
necessary for stabilization (kcrit

t = 58 %, gray). Confidence intervals originate from error propagation of the uncertainty
of the underlying model parameters. All model parameters are listed in Table S3 and the full uncertainty analysis is
in Fig. S3.

In the metastable regime, the spread is stabilized as long as case numbers stay below the test-trace-and-isolate
(TTI) capacity of local health authorities, and kt is sufficiently low. However, a robust control of the pandemic
requires maintaining a sufficient safety-margin from the tipping point, and the subsequent transition to
instability – for two main reasons: First, small fluctuations in kt, Φt (or other model variables) could easily
destabilize the system. Second, compared to the critical value kcrit

t (i.e. the minimum contact reduction
required for stability), a further reduction by just 5 % leads to significantly lower case numbers (Fig. 2 A).
In fact, case numbers are well below 10 daily new infected per million in the vast majority of the stable
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parameter regime (Fig. 2 B, lower left region). Thus, already with moderate contact reduction, a regime of
case numbers clearly below 10 per million can be stabilized well.
The specific contact reduction that is required to achieve an equilibrium depends on the TTI effectiveness. If
case numbers are sufficiently low and thus the TTI is fast and effective, then the required contact reduction is
kcrit
t = 39 % (95% confidence interval (CI):[24, 53]%). However, if case numbers exceed the TTI capacity limit,

a considerably stronger contact reduction of kcrit
t = 58 % (95% CI: [53, 62]%) is required for stabilization

(Fig. 2 C and Table S3). Precise values depend on the specific parameters of the model, and each parameter
carries its own uncertainty. We propagated these uncertainties and thereby obtained the above uncertainty
estimates (Supplementary Note S2.3).
We investigated the results are affected by various model parameter, including imperfect quarantine, asymp-
tomatic carriers (which are harder to detect), and the respective delays associated with incubation, testing
and contact tracing, and case-reporting delays (Supplementary Fig. S3). Among all parameters, the ones
that have the highest impact on mitigation are (i) a sufficiently strict quarantine and isolation — otherwise,
infection chains are not stopped despite isolation; (ii) the specific fraction of asymptomatic individuals —
because while not detected, these cases strongly contribute to the inadvertent transmission; and (iii) the
availability of symptom-driven testing — because the earlier a symptomatic person is detected, the earlier
their (potentially asymptomatic) infected contacts can be identified and subsequently quarantined. However,
even with TTI, precautionary measures and clear contact reductions remain necessary for containment, and
therefore, for avoiding an uncontrolled spread.

2.4 If case numbers exceed the capacity of testing and tracing, the spread gets out of
control and self-accelerates.

If case numbers surpass the capacity limit, the system crosses a tipping point, and the spread gets out of
control. This is reflected in the following observables (Fig. 3):

First, the increase in daily new observed cases N̂obs becomes steeper, growing even faster than the previous
exponential growth (Fig. 3 A, full versus faint line). In the simulated scenario, we assumed a slight increase in
case numbers over a few months, as observed in Germany and many other European countries throughout the
summer (Fig. 6). Here, case numbers increased because the contact reduction of kt = 20 % is not sufficient to
ensure stability. When case numbers surpass the TTI capacity, the spread self-accelerates because increasingly
more contacts are missed. Importantly, in this scenario, the accelerated spread arises solely because of
exceeding the TTI limit — thus without any underlying behavior change among the population.

Second, the observed reproduction number R̂obs
t , which had been only slightly above the critical value of unity,

increased to about R̂obs
t = 1.2 (Fig. 3 B). This shows that not only case numbers but even the reproduction

number itself R̂obs
t increases after case numbers surpass the TTI limit. The above reflects a gradual loss of

control over the spread and explains the faster-than-exponential growth of case numbers. The initial dip in
R̂obs
t is a side-effect of the limited testing: as increasingly many cases are missed, the observed reproduction

number reduces transiently. This dip is also visible in Fig. 1 at the TTI limit.
Third, compared to the infectious individuals who are quarantined IQ, the number of infectious individuals
who are hidden IH (i.e. those who are not isolated or in quarantine) increases disproportionately (Fig. 3 C).
The hidden infectious individuals are the silent drivers of the spread as they, unaware of being infectious,
inadvertently transmit the virus. This implies a considerable risk, especially for vulnerable people. At low
case numbers, the TTI system is capable to compensate the hidden spread, because it uncovers hidden cases
through contact tracing. However, at high case numbers, the TTI slows down; it may become “slower than the
viral spread”, and starts to fall short of its purpose to quarantining contacts before they become spreaders.
Fourth, and related, the so-called dark figure, estimated in the model as the ratio between hidden and detected
infected (IH/IQ), increases considerably once TTI capacity is surpassed. The dark figure is not directly
observable from reported case numbers in real-world settings, however, our model suggests that beyond the
TTI limit, the fraction of hidden carriers and spreaders of the virus among the population grows (Fig. 3 D).

2.5 Lockdowns can re-establish control once the spread got out of control — if implemented
correctly.

Once the number of new infections has overwhelmed the TTI system, re-establishing control can be challenging.
A recent suggestion is the application of a circuit breaker [23–25], a short lockdown to significantly lower the
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Figure 3: Exceeding tracing capacity has an observable effect in case numbers, accounting for several
unobserved changes. (A-D) We consider a scenario with insufficient contact reduction (kt = 20 %): At t = 0, the
TTI capacity limit is exceeded which leads to (A) observed case numbers N̂obs growing faster than the previously
observed exponential growth (dark versus light line, respectively), and (B) the observed reproduction number R̂obs

t

steeply increasing after a transient drop. (The transient drop reflects the slow down in testing). (C) This breakdown
of TTI also leads to a strong increase in the hidden (i.e. not or not yet detected) infectious pool IH , which becomes
larger than the quarantined infectious pool IQ. (D) Consequently, the dark figure, calculated as the ratio between the
two pools IH/IQ, increases. Both the increase in IH/IQ and R̂obs

t , make controlling the spread increasingly difficult
after surpassing the TTI limit. (E) We further consider scenarios in the metastable regime. Here, the baseline influx
is the same as in panel A, but the contact reduction is larger (kt ≥ 40%, as indicated in the figure). This renders
the dynamics stable below the TTI limit. Then, one large temporary influx event (super-spreading event, or end
of holidays) is added at t = 0 (gray line): In this example, already a contact reduction of kt = 40% or kt = 41%
makes the difference whether case numbers are already low before the influx event, and subsequently an influx event
is absorbed by the available TTI capacity — or not. Thus, if case numbers are already near the TTI limit, even a
moderate temporary influx can destabilize the system.

number of daily new infections. However, in the following we show that it has to be strong enough and long
enough to show effect, and even after the circuit breaker, moderate or strong contact reductions have to be
maintained.
Already during the first wave, lockdowns have proven capable to lower case numbers by a factor 2 or more
every week (corresponding to an effective reproduction number of R̂eff

t ≈ 0.7). With the knowledge we now
have acquired about the spreading of SARS-CoV-2, more targeted restrictions may yield a similarly strong
effect. However, one central challenge remains: Due to the delays between contagion and case-report, effects
of interventions start to be observable only 1-2 weeks after initiating the lockdown. Hence, in practice, it is
necessary to reevaluate a strategy after that waiting time.
Inspired by the lockdowns installed in Germany and many other countries, we assume a default lockdown
that starts two weeks after case numbers exceed the TTI capacity limit. The lockdown has a default duration
of four weeks and an effective reduction of contagious contacts by kLD = 75 % relative to the pre-COVID-19
(which translates to R̂eff

t ≈ 0.85). After the lockdown, a moderate contact reduction (knLD = 40 %) is
maintained. As lockdowns typically comprise both a strong contact reduction and travel restrictions, we also
reduce the external influx Φt by a factor 10 during the lockdown. By varying the parameters of this default
lockdown, we show in the following that the lockdown strength, duration and starting time determine its
success in regaining control. The complete dependency is depicted in Fig. 4 G and H.
The duration of a lockdown determines whether or not a stable regime is reached. In our scenario, a lockdown
duration of four weeks is sufficient to reach the stable regime (Fig. 4 A). However, if lifted too early (before
completing four weeks), then case numbers will rise again shortly after easing the lockdown. The shorter an
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is required to push daily case numbers below the TTI capacity. (C) Lockdown starting time. The start time is
given in weeks after the TTI capacity was exceeded. The sooner a lockdown is enacted, the more effective it can be:
For late start times (≥ 6 weeks), case numbers cannot be brought below TTI capacity with the reference lockdown
of 4 weeks. (D–F) Total cases after three months, if the lockdown is parameterized as described in panels A–C,
respectively. (G, H) Lockdown duration, strength and start time are complementary: How does the
minimum lockdown duration that is required to reduce case numbers below TTI capacity depend on the starting time
and the contact reduction during the lockdown? (G) Lower left, dark region: Heavy contact reduction and timely
lockdown enacting can make even short lockdowns (≤ 2 weeks) effective. Upper right, bright region: Moderate contact
reduction and late start times require increasingly long lockdowns. For mild contact reduction and very late start
times, lockdowns become ineffective even when they last indefinitely — the system is unstable and case numbers
increase. (H) Horizontal slices through the colormap (G). Here, colors match panels (C, F) and correspond to the
lockdown start time.

insufficient lockdown, the faster case numbers will rise again. Also, it might be advantageous to not stop
right below the TTI limit, but to establish a safety-margin for robustness. Overall, the major challenge is not
to ease the lockdown too early, as otherwise the earlier success is soon squandered.
When a lockdown is implemented, it is necessary to reduce contagious contacts kt severely in order to decrease
case numbers below the TTI capacity limit (Fig. 4 B). In our model scenario, the contacts have to be reduced
by at least kLD = 75 % to bring the system back to a stable regime. A lockdown that is only slightly weaker
cannot reverse the spread to a decline of cases (even if kLD > kcrit

t ≈ 60 %, Fig. 4 B). Furthermore, increasing
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the lockdown strength decreases the required lockdown duration (Fig. 4 G and H). This shows that stricter
lockdowns imply shorter-lasting social and economical restrictions.
The earlier a lockdown begins after exceeding the TTI capacity limit, the faster control can be re-established
and constraints can be loosened again (Fig. 4 C). If started right after crossing the threshold, in principle,
only a few days of lockdown are necessary to bring back case numbers below TTI capacity limit. On the other
hand, if only starting four or six weeks later, the lockdown duration necessary to reach the stable regime
becomes increasingly long and leads to a significantly larger amount of total cases (Fig. 4 F) and fatalities.
Interestingly, either a lockdown is strong enough to reach control within a few weeks – or else it fails to do so
almost completely (Fig. 4 G). The parameter regime between these two options is quite narrow, thus it is not
very likely to be realized over long weeks. For practical policies this means that — if a lockdown does not
start to show clear effect after 2 or 3 weeks, should revise the strategy.

2.6 Long-term perspective: Repeated lockdowns are not required to maintain control over
the COVID-19 spread

A natural goal would be to keep case numbers below the hospital capacity. However, our model suggests that
keeping them below TTI capacity requires less contact restrictions, less lockdown duration, and costs less
lives. In the following we compare these two goal — keep case numbers either below TTI capacity or below
hospital capacity. We assume that with crossing the respective capacity limit a circuit breaker is enacted.
Here, we study the long-term perspective of these two circuit-breaker strategies and their dependence on the
contact reduction when not in lockdown.
To study the relative contribution of the different factors involved in the circuit-breaker dynamics (Fig. 5),
we start from an unstable condition, where the base contact reduction k0 = 20% is not sufficient to control
the spread, and we enact a two-week lockdown when crossing either the TTI or the hospital capacity. During
the lockdown, contacts are reduced by kLD = 75 %. After the first and all subsequent lockdowns, contacts
knLD are reduced by 20%, 40% or 60% relative to pre-COVID levels, thus mildly, moderately, or strongly.
Assuming mild contact reduction after lockdowns (knLD = 20 %), then case numbers rise after lifting the
lockdown, independent of the chosen threshold (TTI or Hospital capacity, Fig. 5 A). In both scenario, repeated
regulatory lockdowns are necessary to prevent the health care system from being overwhelmed. In contrast,
if the contact reduction after the first lockdown remains relatively strong (knLD = 60 %, Fig. 5 C), then case
numbers are stabilized and no further lockdowns are required.
Interestingly, maintaining moderate contact reduction while not in lockdown (knLD = 40 %, Fig. 5 B), is
sufficient to stay within the metastable regime of low case numbers (as long as TTI is not overwhelmed).
This opens a promising perspective for a mid- or long-term control strategy: Once case numbers are below
the TTI limit (after an initial lockdown), maintaining a moderate reduction of contacts is sufficient to enable
a long-term control of the spread, without additional lockdowns (Fig. 5 B, yellow line). However, if case
numbers are only below hospital capacity but above TTI capacity limit, the same, moderate contact reduction
requires repeated lockdowns (Fig. 5 B, red line).
The advantage of the strategy to stay below the TTI capacity limit becomes very clear when considering the
total cost of the required lockdowns: Independently of the level of contact reduction, (i) the total number of
cases (and consequently deaths and long-COVID risk) is lower (Fig. 5 D), (ii) the total duration spent in
lockdown is shorter (Fig. 5 E), and (iii) the frequency at which lockdowns have to reoccur is lower (Fig. 5 A).
As case numbers and lockdown duration indicate economic costs, a strategy that respects the TTI limit offers
a low economic toll, enables mid-term planning and provides trust to people and society.
In future, large-scale testing and immunization certainly will play a role for long-term strategies. The
availability of cheap, fast, and reliable tests will make large-scale random testing possible and facilitate the
early detection of infection chains, as it improves the efficiency of TTI [26–29] (Fig. 5 F). However, for random
testing to show effect, a large number of individuals has to be tested. For instance, a naive random testing
rate λr of 5% would lower to necessary contact reduction below 10%, but would require every individual to
be tested every 20 days. When larger fractions of the population are immunized (either through vaccination
or lasting post-infection immunity), the minimum required reduction of contacts becomes lower. These are
signs of saturation towards herd immunity (Fig. 5 G, see Supplementary Section 4 for further discussion).
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Figure 5: On a long-term perspective, lockdowns are not required repeatedly if the subsequent contact
reduction knLD is sufficient to keep case numbers constant. When case numbers are low, fewer lockdowns
(abbreviated as LD in the figure) are required than at high case numbers. (A–C) Daily observed new cases per million
for different levels of sustained contact reduction knLD, which is maintained after the lockdowns. We assume that
a two-week lockdown is either enacted when the TTI capacity limit is crossed (yellow lines), or when the hospital
capacity limit is crossed (red lines), and that the effective contact reduction takes one week to ramp from its value
in non-lockdown to the lockdown situation (knLD → kLD). (A) Given only a mild contact reduction knLD = 20%
when no lockdown is imposed, lockdowns need to reoccur with a high frequency, which gets even higher when TTI
is overwhelmed and case numbers are near hospital capacity. (B) For a moderate contact reduction knLD = 40%,
lockdowns only need to reoccur if they fail bringing case numbers within TTI capacity where case numbers can be
controlled illustrated by the short lockdowns enacted after crossing hospital capacity (red curve). (C) For heavy
contact reduction knLD = 60%, lockdowns do not need to reoccur, even when enacted only at high case numbers.
(D, E) The total cost (in terms of cumulative cases and total lockdown duration) depends on the level of contact
reduction and the lockdown policy: It is lower when lockdowns are initiated at the TTI capacity limit and when
contact reduction knLD in between lockdowns is high. (F, G) In the future, the required contact reduction for marginal
stability kcrit

t may be lowered by the implementation of large-scale random testing (F) or by immunization of the
population (G).

3 Discussion

We demonstrated that between the two extremes of eradication and high case numbers close to or beyond
the hospital capacity limit, stable and metastable regimes of SARS-CoV2 spreading exist. In such regimes,
every person only has to reduce their contacts moderately, while case numbers still can be maintained
robustly at low levels. The contact reduction can be milder if case numbers are sufficiently low, so that the
test-trace-isolate (TTI) system can act efficiently and quickly to break infection chains. We explored how
these regimes can be regained through lockdowns after TTI systems have been overwhelmed, and we showed
long-term perspectives given different mitigation strategies.
To focus on the general spreading dynamics, we made several simplifying assumptions. First, we assumed that
spreading happens homogeneously in the population, without regional differences. With this simplification, our
model predicts the level, at which case numbers reach the national TTI capacity, but due to heterogeneities
of the spread and TTI capacity, regional TTI limits can be reached earlier than what nationwide case
numbers imply. Second, we did not consider age-related transmission, contact and incidence differences,
which could lead to similar effects. Third, we assumed in our scenarios that the behavior of the population
and subsequent contact reduction is constant over time (except during lockdown). Real situations are more
dynamic, necessitating frequent reevaluations of the current restrictions and mitigation measures. The effect
of inhomogeneous populations may have a similar effect like simulating distinct, but coupled populations,
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or, like simulating one population that is subject to some external input Φt. Hence, varying the input Φt

can — to a first approximation — serve to explore coupled, inhomogeneous populations. For our results that
would imply that inhomogeneity — like Φt — changes the absolute values of the equilibrium, and might even
destabilize it.
Quantitatively, our assumptions regarding the efficiency of TTI are in agreement with those of other modeling
studies. Both agent-based studies with detailed contact structures [30,31] as well as studies using mean-field
spreading dynamics [32–36] agree that TTI measures are an important contribution to control the pandemic,
but success depends strongly on how well they are implemented. For an efficient TTI implementation, fast
testing, rigorous isolation, and a large fraction of traced contacts are essential [30,31]. Given our informed
assumptions about these parameters, our model shows that TTI only can compensate for a basic reproduction
number R0 of 3.3 — if in addition contagious contacts are reduced by about 40 % (95% CI: [24,53] %). This
is comparable to the results of other studies [30,31,33,37,38].
In the following we put our modeling results into perspective with respect to the dynamics of COVID-19
observed in Germany and Europe (for an extended discussion of several countries throughout the world see
Supplementary Notes, Section S2.1). We then discuss the impact of the central factors, and finally stress
again the importance of behavior for contact reduction.

3.1 Recent COVID-19 spreading dynamics in Europe may reflect exceeded TTI capacity

Indications of a transition from the TTI stabilized regime to a regime of self-accelerated spread can be found
in various countries. In our model, the self-acceleration of the spread does not unfold instantaneously but
throughout four to eight weeks after crossing the TTI limit (cf. Fig. 3). Various countries, especially in
Europe, have shown a rapid increase in case numbers, that sets in after exceeding around 20 to 50 daily new
cases per million. For example, a Bayesian inference analysis of German case numbers finds a substantial
increase of the effective daily growth rate that lasted for around 4 weeks throughout October (Fig. 6, [39]).
Other European countries showed comparable dynamics, but at different times (Fig. S4). Many of these
countries transitioned from a nearly stabilized state to an uncontrolled spread — in qualitatively similar ways
that may be related to exceeding TTI capacity.

Figure 6: A substantial increase in the effective growth rate in Germany occurred during the month of
October, suggesting that regional TTI capacity limits were exceeded. (A) Before October, the reproduction
number was slightly above one (corresponding to a daily growth rate λ∗ slightly above zero). (B) Observed case
numbers were stabilized below 20 daily new cases per million (but still, slowly growing), until a transition into the
unstable regime took place over ∼ 4 weeks in October. The time range is adjusted to focus on this tipping point. The
inset shows case numbers for the full available time range. (C) Main central epidemiological parameters with prior
and posterior distribution.

3.2 Strategies to face COVID-19 differ among countries

Strategies to face COVID-19 differ among countries and are reflected in the case numbers. Very low case
numbers and even local eradication has been achieved by several South- and East-Asian countries, Australia
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and New-Zealand. By aiming for local eradication, these countries reached very low case numbers (below one
daily new case per million, Supp. Fig. S2 C). If local eradication is successful, these countries can profit from
the absorbing state of zero SARS-CoV-2 infections.
In many European countries over the summer, case numbers were relatively low, typically around 10 daily
new cases per million (Fig. S2 B) and contacts were only mildly restricted. However, at the end of summer,
many countries suffered a second wave (Supp. Fig. S4) that cannot be explained by seasonality alone
(cf. Supp. Sec. S2.1). In Europe, it would be difficult to reach the extremely low levels of about one daily new
case per million because an external influx from neighboring countries cannot be prevented. Nonetheless, the
stabilized case numbers in Europe during summer show that this regime can be maintained.
Sustained high levels of more than 100 daily new cases per million have been observed in several (but not all
and not exclusively) American countries (Supp. Fig. S2 A). This shows that high levels of daily new infections
can be maintained in principle. However, the stringency of interventions is similar to other countries (see [40]),
and the prospect of reaching herd immunity is still far away.
In our results on long-term strategies that focused on a 30 week time frame, first signs of herd immunity
could be observed at high case numbers (Fig. 5 B): At high case numbers, the need for regulatory lockdowns
became less frequent over time. However, the cost of aiming for herd immunity in a real-world scenario,
is a high number of infected, hospitalized, and deceased people, besides those recovered individuals who
potentially will suffer from “long COVID” [2–5,41], the concurrent high risk for anyone to get infected, as
well as long-term burden to the health care system. Stability through herd immunity is only possible if the
post-infection immunity lasts for years, which is unclear as of yet [1, 42–45]. Nonetheless, this phenomenon
shows that immunity effects play an increasing role as model predictions extend further into the future —
and dedicated modeling is required to address immunity properly.

3.3 Central parameters of our model

To be effective, TTI implementations must provide sufficient test capacity, and tracing should be fast and
extensive. If implemented with parameters similar to German or European systems during summer, then
according to our model only about 40 % instead of 60 % reduction are necessary to stabilize the spread. In
other words, if case numbers are low, all the available test and trace efforts can be concentrated on the
remaining infection chains and thereby increase their effectiveness in mitigation. We did not model this effect
explicitly, but it would further facilitate a control at low case numbers and in fact such a trend had been
observed during spring in Germany.
We assumed that TTI reaches its capacity limit at about 100 daily new infected per million. This value is
comparably high, but still within the range that could be traced in Germany with considerable effort. The
precise limit of contact tracing depends on a number of factors, including the personnel at the tracing units,
potentially a tracing app [33], and the number of relevant contacts a person has on average. Already the
latter factor can easily differ by a factor 10, depending on contact restrictions. However, for the qualitative
dynamics, the precise value of the tracing capacity does not matter too much (as long as it is high enough or as
long as case numbers are low): As long as the system is (meta-) stable, the equilibrium value of new infected is
determined by Φt and kt, and is typically far below this TTI limit, typically well below 10 daily new cases per
million (Fig. 2). Thus, stable systems either tend to equilibrate far below the TTI limit, or else they are very
close to tipping over (Fig. 2A, Fig. 3E). The TTI limit plays a central role in informing policymakers when to
issue preventive measures: if approaching that limit, the risk of tipping over to uncontrolled spread strongly
increases, and countermeasures then should be taken early. Otherwise, the spread might self-accelerate and
get out of control.

3.4 Conclusion and Outlook

Our results show that a stable equilibrium regime at low case numbers exists and can be maintained with
a moderate contact reduction (about 40 % less contagious contacts compared to pre-COVID-19). In that
regime, a certain level of new imported infections (Φt) can be compensated and no further lockdowns or
circuit breakers are necessary.
A moderate reduction of infectious contacts kt of 40 to 60 % can be achieved with preventive mitigation
measures, as shown by studies analyzing the effectiveness of non-pharmaceutical interventions during the
first wave [39, 46–48]. Restrictions on the maximum size of gatherings to 100 people already lead to effective
reductions in the range of 10 to 40 % [39, 46, 48]. Improved hygiene, frequent ventilation of rooms, and
the compulsory use of masks can further reduce the number of infectious contacts, yet, by a factor that is
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more difficult to estimate [49–51]. When the aim is to stay in the metastable regime of low case numbers
below TTI capacity, then only a moderate contact reduction is required to stabilize the system; reoccurring
lockdowns are not necessary. Hence, this regime is very promising for a mid- and long-term management of
the pandemic, until a vaccination or better treatment of COVID is developed, as it poses the least burden on
economy and society.
The alternative option is to stabilize case numbers at higher levels (below the hospital capacity), which
requires a stronger contact reduction (about 60 %). This is because testing and tracing become less efficient.
However, if case numbers are stabilized at the high level and then need to be lowered, an even stronger
contact reduction of 75 % over the duration of a lockdown (a few weeks) is necessary to achieve a suppression
of the spread. From the past studies on the effectiveness of interventions, it seems unlikely that such a
reduction can be achieved without incisive measures, including potentially the closure of schools and public
businesses, stay-at-home orders, and contact bans [39,46,47]. This assessment is in line with the experience of
e.g. Israel and Ireland during the second wave. Thus, stabilizing the spread at higher levels of case numbers
counterintuitively requires more stringent (and repeated) measures than a stabilization at low case numbers.
Concluding, the recommendation from this paper is to achieve and maintain low case numbers that ensure an
efficient operation of TTI measures. To maintain this regime, one needs to counteract local super-spreading
events or extensive influx of new cases as early as possible. If throughout Europe, or even internationally, low
case numbers are reached and maintained, then every country profits from the stability of their neighbors.
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S1 Methods

Model overview. We model the spreading dynamics of SARS-CoV-2 as the sum of contributions from two
pools of infectious individuals, i.e. quarantined-isolated IQ and hidden non-isolated IH individuals, while
also modeling the infectivity timeline through the incorporation of compartments for individuals exposed
to the virus (EQ, EH), following an SEIR-like formalism. The quarantined infectious pool (IQ) contains
cases revealed through testing or by contact tracing and subsequently sent to quarantine-isolation and avoid
further contacts as well as possible. In contrast, in the hidden infectious pool (IH), infections spread silently
and only become detectable when individuals develop symptoms and get tested, via random testing in the
population or as part of the chain of contacts of recently identified individuals. This second pool (IH) is
called the hidden pool; individuals in this pool are assumed to exhibit the general population’s behavior,
thus of everyone who is not aware of being infected. Healthy individuals that can be infected belong to the
susceptible pool S, while we assume that, after they recover and for the relatively short time-frame here
studied, they remain immunized in the R compartment. For a graphical representation of the model, the
reader is referred to Supplementary Fig. S1. We model the mean-field interactions between compartments
by transition rates, determining the timescales involved. These transition rates can implicitly incorporate
both the time course of the disease and the delays inherent to the TTI process. Individuals exposed to the
virus become infectious after the latent period, modeled by the We distinguish between symptomatic and
asymptomatic carriers – this is central when exploring different testing strategies (as detailed below). We also
include the effects of non-compliance, modeled as a higher asymptomatic ratio, and imperfect contact tracing,
including an explicit delay between testing and tracing of contacts. In the different scenarios analyzed, we
include a non-zero influx Φt of new cases that acquired the virus from outside. Even though this influx
makes a complete eradication of SARS-CoV-2 impossible, different outcomes in the spreading dynamics might
arise depending on both contact intensity and TTI. We then investigate the system’s stability and dynamics,
aiming to control the spread with a low total number of cases without necessitating a too large reduction of
infectious contacts.

S1.1 Spreading Dynamics

Concretely, we use a modified SEIR-type model, where infected individuals can be either symptomatic or
asymptomatic. They belong to hidden (EH , IH) or a quarantined (EQ, IQ) pools of infections, thus creating
in total one compartment of susceptible (S), two compartments of exposed individuals (EH , EQ), four
compartments of infectious individuals (IH,s, IH,a, IQ,s, IQ,a), and one compartment for recovered/removed
individuals (R).
New infections are asymptomatic with a ratio ξ, the others are symptomatic. In all compartments individuals
are removed with a rate γ because of recovery or death ( Supplementary Table S1 for all parameters).
In the hidden pools, the disease spreads according to the contact patterns of the population, which can be
expressed as a fraction kt of the intensity they had before COVID-19 related contact-restrictions. Defining R0
as the base reproduction number without contact restrictions, the reproduction number of the hidden pool
IH is given by (1− kt)R0. This reproduction number reflects the disease spread in the general population,
without testing induced isolation of individuals. Additionally, the hidden pool receives a mobility-induced
influx Φt of new infections. Cases are removed from the hidden pool (i) when detected by TTI and put into
the quarantined pool IQ, or (ii) due to recovery or death.
The quarantined exposed and infectious pools (EQ, IQ) contain those infected individuals who have been
tested positive as well as their positively tested contacts. Infectious individuals in IQ are (imperfectly) isolated,
we assume their contacts have been reduced to a fraction (ν + ε) of the ones they had in pre-COVID-19
times, of which only ν are captured by the tracing efforts of the health authorities, and the subsequent
infections remain quarantined, thus entering the EQ pool and afterwards the IQ pool. The remaining fraction
of produced infections, ε, are missed and act as an influx to the hidden pools (EH). Therefore, the overall
reproduction number in the IQ pool is (ν + ε)R0.
As our model is an expanded SEIR-model, it assumes post-infection immunity, which is a realistic assumption
given the limited time-frames considered in our analysis. Our model can also reflect innate immunity; one
then has to rescale the population or the reproduction number. The qualitative behavior of the dynamics is
not expected to change.

16



Towards a long-term control of COVID-19 at low case numbers

S1.2 Parameter Choices and Scenarios

For any testing strategy, the fraction of infections that do not develop any symptoms across the whole
infection timeline is an important parameter, and this also holds for testing strategies applied to the case of
SARS-CoV-2. In our model this parameter is called ξap and includes beside true asymptomatic infections ξ
also the effect of individuals that avoid testing [17]. The exact value of the fraction of asymptomatic infections
ξ, however, is still fraught with uncertainty, and it also depends on age [13,53,54]. While early estimates were
as high as 50 % (for example ranging from 26 % to 63 % [55]), these early estimates suffered from reporting
bias, small sample sizes and sometimes included pre-symptomatic cases as well [15, 56]. Recent studies
estimate the asymptomatic transmission to be more minor [57], estimates of the fraction of asymptomatic
carriers range between 12 % [15] and 33 % [16].
Another crucial parameter for any TTI strategy is the reproduction number of the hidden infections. This
parameter is by definition impossible to measure, but it presents typically the main driver of the spreading
dynamics. It depends mainly on the contact behavior of the population, and ranges from R0 in the absence
of contact restrictions to values below 1 during strict lockdown [39]. Herein we decided to include instead the
reduction of contacts with respect to the pre-COVID-19 base-line kt to represent the reproduction number of
hidden infections IH , which would be proportional to (1− kt)R0. For the default parameters of our model,
we evaluated different levels of contact reduction kt.

S1.3 Testing-and-Tracing strategies

We consider a testing-and-tracing strategy: symptom-driven testing and specific testing of traced contacts,
with a subsequent of the cases tested positive. Our model can also include random testing, but this case is
not explored in the scenarios of this paper.
Symptom-driven testing is defined as applying tests to individuals presenting symptoms of COVID-19.
In this context, it is important to note that non-infected individuals can have symptoms similar to those of
COVID-19, as many symptoms are rather unspecific. Although symptom-driven testing suffers less from
imperfect specificity, it can only uncover symptomatic cases that are willing to be tested (see below). Here,
symptomatic, infectious individuals are transferred from the hidden to the traced pool at rate λs.
We define λs as the daily rate at which symptomatic individuals get tested, among the subset who are willing
to get tested, because of surveillance programs or self-report. As default value we use λs = 0.25, which means
that, on average, an individual willing to get tested that develops COVID-19-specific symptoms would get a
test within 4 days from the end of latency. Testing and isolation happens immediately in this model, but
their report into the observed new daily cases N̂obs is delayed, and so is the tracing of their contacts.
Tracing contacts of positively tested infectious individuals presents a very specific test strategy, and is
expected to be effective in breaking the infection chains, if contacts self-isolate sufficiently quickly [30, 58, 59].
However as every implementation of a TTI strategy is bound to be imperfect, we assume that only a fraction
η < 1 of all contacts can be traced. These contacts, if tested positive, are then transferred from the hidden to
the quarantined infectious pools (IH → IQ) with an average delay of τ = 2 days. The parameter η effectively
represents the fraction of secondary and tertiary infections that are found through contact-tracing. As this
fraction decreases when the delay between testing and contact-tracing increases we assumed a default value
of η = 0.66, i.e. on average only two thirds of subsequent offspring infections are prevented. Contact tracing
is mainly done by the health authorities in Germany, and this clearly limits the maximum number N test

max of
new cases observed through testing N test, for which contact tracing is still functional.
Random testing is defined here as applying tests to individuals irrespective of their symptom status, or
whether they belonging to the contact-chain of other infected individuals. In our model, random testing
transfers infected individuals from the hidden to the quarantined infectious pools with fixed rate λr, irrespective
of them showing symptoms or not. In reality, random testing is often implemented as situation-based testing
for a sub-group of the population, e.g. at a hot-spot, for groups at risk, or for people returning from travel.
Such situation-based strategies would be more efficient than the random testing assumed in this model, which
may be unfeasible in a country level due to testing limitations [12].

S1.4 Lockdown modelling

To assess the effectiveness of lockdowns in the broad spectrum of contact-ban governmental interventions, we
model how the reduction of contacts and the duration of such restrictive regimes help lower case numbers.
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We model contact reductions as reductions in the reproduction number of the hidden population, which for
these matters is presented as percentages of the basic reproduction number R0, which sets the pre-COVID-19
base-line for the number of close contacts.
For the sake of simplicity, we assume the lockdown has three signature stages: i) uncontrolled regime, where
the TTI capacity is overwhelmed because of high case numbers and unsustainable contact intensity, reflected
by a high value of kt = k0 and high influx of infections Φt. ii) Strong reduction of contacts k0 → kLD and
borders closing Φt → ΦLD. iii) Relaxation of measures to a new level, where the system should be again
stable, within the TTI-based stability kLD → knLD, and borders would be open ΦLD → ΦnLD. All the changes
between the different regimes i→ii→iii are modelled as linear ramps for both parameters, which take Dramp
days to reach their set-point. The duration of the lockdown DL, namely, the time-frame between the start of
the restrictive measures and the beginning of their relaxation, is measured in weeks, and its default length –
for analysis purposes – is four weeks.

S1.5 Model Equations

The contributions of the spreading dynamics and the TTI strategies are summarized in the equations below.
They govern the spreading dynamics of case numbers in and between the different susceptible-exposed-
infectious-recovered (SEIR) pools, both hidden -non-isolated- and quarantined -under surveillance-. We
assume a regime where most of the population is susceptible, and the time-frame analyzed is short enough to
assume post-infection immunity. Thus, the dynamics are completely determined by spread (characterized by
the reproduction numbers (1− kt)R0, (ν + ε)R0), transition from exposed to infectious (at rate ρ), recovery
(characterized by the recovery rate γ), external influx Φt and the impact of the TTI strategies:

dS

dt
=− γ (1− kt)R0

S

M
IH︸ ︷︷ ︸

hidden contagion

− γ (ν + ε)R0
S

M
IQ︸ ︷︷ ︸

traced contagion

− S

M
Φt︸ ︷︷ ︸

ext. influx

, (1)

dEQ

dt
= γνR0

S

M
IQ︸ ︷︷ ︸

traced contagion

+ χτN
traced︸ ︷︷ ︸

contact tracing

− ρEQ︸︷︷︸
end of latency

, (2)

dEH

dt
= γ

S

M

(
(1− kt)R0I

H + εR0I
Q
)

︸ ︷︷ ︸
hidden contagion

− χτN
traced︸ ︷︷ ︸

contact tracing

− ρEH︸ ︷︷ ︸
end of latency

, (3)

dIQ

dt
= ρEQ − γIQ︸ ︷︷ ︸

spreading dynamics

+N test︸ ︷︷ ︸
testing

+ (χs,r (1−ξ) + χrξ)N traced︸ ︷︷ ︸
contact tracing

, (4)

dIH

dt
= ρEH − γIH︸ ︷︷ ︸

spreading dynamics

−N test︸ ︷︷ ︸
testing

− (χs,r (1−ξ) + χrξ)N traced︸ ︷︷ ︸
contact tracing

+ S

M
Φt︸ ︷︷ ︸

ext. influx

, (5)

dIH,s

dt
= (1−ξ) ρEH − γIH,s︸ ︷︷ ︸

spreading dynamics

−N test
s︸ ︷︷ ︸

testing

− (1−ξ)
(
χs,rN

traced︸ ︷︷ ︸
contact tracing

− S

M
Φt︸ ︷︷ ︸

ext. influx

)
, (6)

IH,a = IH − IH,s, (7)
dR

dt
= γ

(
IQ + IH

)
︸ ︷︷ ︸

recovered/removed individuals

. (8)

S1.6 Initial conditions

Let x be the vector collecting the variables of all different pools:

x = [S, EQ, EH , IQ, IH , IH,s, R]. (9)
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We assume a population size of M = 1e6 individuals, so that
∑
i 6=6 xi = M , and a prevalence of I0 = 200

infections per million, so that IQ(0) = I0. Assuming that the hidden amount of infections is in the same order
of magnitude I0, we would have IH(0) = I0, I

H,s(0) = (1− ξ)I0. We would expect the exposed individuals
to scale with (1− kt)R0I0, but we rather assume them to have the same size of the corresponding infectious
pool. To calculate the initially susceptible individuals, we use S(0) = 1−

∑
i 6={1,6} xi.

S1.7 Effect of delays and capacity limit on the effectiveness of TTI strategies

In this section we discuss further details on the derivation of the different parameters and variables involved
in equations (1)–(8). First, as we assume contact tracing to be effective after a delay of τ days, some of the
individuals who acquired the infection from those recently tested might have also become infectious by the
time of tracing. Moreover, a fraction of those who became infectious might also have been tested by the
tracing time, should they have developed symptoms.
Furthermore, we give explicit forms for N test and N traced, respectively, the number of cases identified
exclusively by testing and contact-tracing, both for being within or over the TTI capacity. For simplicity,
we assume that both testing and contact-tracing change their dynamics simultaneously, which depends on
whether the daily amount of cases identified by testing N test overpasses the TTI threshold N test

max. After
overwhelmed, the overhead testing would change its rate λs → λ′s, as only patients with a more specific set of
symptoms would be tested. Nonetheless, the contact-tracing efforts can only follow the contacts of those
N test

max observed cases, identifying a fraction η of the offspring infections they produced in their infectious
period spent in unawareness of their state. The case of random testing is analyzed in the Supplementary
Section 1.

S1.7.1 Limited testing capacity leading to lower testing rates

In the first stages of an outbreak, individuals with any symptoms from the broad spectrum of COVID-19-
related symptoms would be tested, disregarding how specific those symptoms are. At this stage, we assume
that the rate at which symptomatic individuals are tested is λs. Then, the number of individuals identified
through testing (which, for simplicity is assumed to be solely symptom-driven) is given by

N test
s = λsI

H,s. (10)

When reaching the daily number N test
max of positive tests the testing capacity is reached. We then assume that

further tests are only carried out for a more specific set of symptoms, leading to a smaller fraction of the
population being tested. We therefore implement the testing capacity as a soft threshold. Assuming that
after reaching N test

max, the testing rate for further cases would decrease to λ′s, the testing term N test would be
given by

N test
s = λs min

(
IH,s, IH,smax

)
+ λ′s max

(
0, IH,s−IH,smax

)
, (11)

where IH,smax represent the size of the infectious -symptomatic, hidden- pool i.e, IH,smax = Ntest
max
λs

.

S1.7.2 Modelling the number of traced individuals

To calculate the number of traced individuals, we assume that a fraction η of the newly tested individuals’
contacts, and therefore their offspring infections, will be traced and subsequently quarantined. However these
tested individuals stay on average a shorter amount of time in the infectious pool than the untested ones
because they are quarantined, thus removed earlier from the pool. The number of offspring infections has
therefore to be corrected by a factor: The average residence time in the infectious pool. For the case λr = 0,
the average residence time is 1

γ+λs
, whereas the average residence time of untested individuals is 1

γ . Dividing
these two times gives us the wanted correction factor. The number of traced persons N traced at time t is
therefore:

N traced (t) = ηRHt−τ
γ

γ + λs
N test (t− τ) . (12)
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Otherwise, when the TTI capacity is overwhelmed, we assume that the number of traced individuals is
limited, that only the contacts of N test

max individuals (already introduced in the previous section) can be traced:

N traced (t) = ηRHt−τ
γ

γ + λs
N test

max. (13)

S1.7.3 Individuals becoming infectious or being tested by the time of tracing

The traced individuals will be removed from either the exposed hidden pool EH or from the infectious hidden
pool IH after the delay of τ days after testing. As we assume a tracing delay τ of only 2 days, a majority
of the traced individuals would still be in exposed compartment. However, some might already become
infectious by that time. To calculate the exact fraction of individuals remaining in the hidden exposed pool
by the time of tracing, we proceed as follows. Let s ∈ Iτ = [0, τ ] be the time elapsed from the moment of
testing. The emptying of the normalized exposed compartment (denoted ẼH) due to progression to the
infectious stage would follow a first-order kinetics:

dẼH

ds
= −ρẼH , ẼH(0) = 1 (14)

The solution of (14) is given by ẼH(s) = exp (−ρs). Therefore, we define χτ as the fraction of the traced
individuals remaining in the EH compartment at s = τ :

χτ = exp (−ρτ) . (15)

The remaining individuals are removed from the infectious compartment, which are then simply described by
the fraction

χr = 1− χτ . (16)

This however only holds for the asymptomatic hidden infectious pool. For the symptomatic hidden pool IH,s,
we do not want to remove the individuals which have already been tested, as they would be removed twice.
For modelling the fraction of non-tested individuals remaining in the normalized symptomatic infectious
compartment (denoted ĨH,s), we couple two first-order kinetics:

dĨH,s

ds
= λs ĨH,s + ρẼH , ĨH,s(0) = 0. (17)

The solution of (17) depends on whether λs = ρ or not. The solution at s = τ which is the fraction of traced
individuals removed from IH,s is given by:

χs,r =
{

ρτ exp (−ρτ) if λs ≈ ρ,
ρ

λs − ρ
(exp (−ρτ)− exp (−λsτ)) else. (18)

For the case λr 6= 0, the reader is referred to the Supplementary Note 4.

S1.8 Central epidemiological parameters that can be observed

In the real world, the disease spread can only be observed through testing and tracing. While the true number
of daily infections N is a sum of all new infections in the hidden and traced pools, the observed number of
daily infections N̂obs is the number of new infections discovered by testing, tracing, and surveillance of the
contacts of those individuals in the quarantined infectious pool IQ, delayed by a variable reporting time.
This includes internal contributions and contributions from testing and tracing:
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N = γ (1− kt)R0
S

M
IH︸ ︷︷ ︸

hidden contagion

+ γ (ν + ε)R0
S

M
IQ︸ ︷︷ ︸

traced contagion

+ S

M
Φt︸ ︷︷ ︸

ext. influx

(19)

N̂obs =
[

ρEQ︸︷︷︸
traced contagion

+N test + (χs,r (1−ξ) + χrξ)N traced︸ ︷︷ ︸
TTI

]
~K, (20)

where ~ denotes a convolution and K an empirical probability mass function that models a variable reporting
delay, inferred from German data (as the RKI reports the date the test is performed, the delay until the
appearance in the database can be inferred): The total delay between testing and reporting a test corresponds
to one day more than the expected time the laboratory takes for obtaining results, which is defined as
follows: from testing, 50 % of the samples would be reported the next day, 30 % the second day, 10 % the
third day, and further delays complete the remaining 10 %, which for simplicity we will truncate at day
four. Considering the extra day needed for reporting, the probability mass function for days 0 to 5 would
be given by K = [0, 0, 0.5, 0.3, 0.1, 0.1]. The spreading dynamics are usually characterized by the observed
reproduction number R̂obs

t , which is calculated from the observed number of new cases N̂obs(t). We here
use the definition underlying the estimates that are published by Robert-Koch-Institute, the official body
responsible for epidemiological control in Germany [60]: the reproduction number is the relative change of
daily new cases N separated by 4 days (the assumed serial interval of COVID-19 [61]):

R̂obs
t = N̂obs(t)

N̂obs(t− 4)
(21)

In contrast to the original definition of R̂obs
t [60], we do not need to remove real-world noise effects by

smoothing this ratio.

S1.9 Numerical calculation of solutions and critical values.

The numerical solution of the delay differential equations governing our model were obtained using a versatile
solver that tracks discontinuities and integrates with the explicit Runge-Kutta (2,3) pair, @dde23 implemented
in MATLAB (version 2020a), with default settings. This algorithm allows the solution of non-stiff systems of
differential equations in the shape y′(t) = f(t, y(t), y(t− τ1), ..., y(t− τk), for a set of discrete lags {τi}ki=1.
Suitability and details on the algorithm are further discussed in [62].
To derive the tipping point between controlled and uncontrolled outbreaks (e.g. critical, minimal required
contact reduction kcrit

t for both stability and metastability), and to plot the stability diagrams, we used the
@fzero MATLAB function, and the linear approximation of the system of DDE (2)–(6) for the S

M ≈ 1 limit.
This function uses a combination of bisection, secant, and inverse quadratic interpolation methods to find the
roots of a function. For instance, following the discussion of Supplementary Section 1, The different critical
values for the contact reduction kcrit

t were determined by systematically solving the nonlinear eigenvalues
problem for stability [63], where the solution operation was approximated with a Chebyshev differentiation
matrix [64].
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Supplementary Table S1: Model parameters.

Parameter Meaning Value
(default) Range Units Source

M Population size 1 000 000 people Assumed
R0 Basic reproduction number 3.3 2.2–4.4 − [14, 19,20]
ν Registered contacts (quarantined) 0.075 − Assumed
ε Lost contacts (quarantined) 0.05 − Assumed
γ Recovery/removal rate 0.10 0.08–0.12 day−1 [65–67]
ξ Asymptomatic ratio 0.32 0.15–0.43 − [15, 16,55]
λs Symptom-driven testing rate 0.25 0–1 day−1 Assumed
λ′s Symptom-driven testing rate (reduced

capacity)
0.1 day−1 Assumed

η Tracing efficiency 0.66 − Assumed
τ Contact tracing delay 2 days Assumed
N test

max Maximal tracing capacity 50 10–75 cases day−1 Assumed
Φt External influx 1 cases day−1 Assumed
ρ Exposed-to-infectious rate 0.25 day−1 [8, 68]
DL lockdown duration 4 0-8 weeks Assumed
Dramp Phase-transition duration (lockdown) 1 weeks Assumed
k0 Baseline contact reduction 20 % − Assumed
kLD Contact reduction during lockdown 75 % − Assumed
knLD Contact reduction post lockdown 40 % − Assumed
ΦLD Ext. influx (during lockdown) 0.1 cases day−1 Assumed
ΦnLD Ext. influx (post lockdown) 1 cases day−1 Assumed
χτ Fraction of contacts traced before be-

coming infectious
0.61 − eq (15)

χs,r Fraction of contacts traced after be-
coming infectious, before being tested
(symptomatic and random)

0.30 − eq (18)

χr Fraction of contacts traced after becom-
ing infectious, before being tested (ran-
dom)

0.39 − eq (16)

Supplementary Table S2: Model variables.
Variable Meaning Units Explanation
S Susceptible pool people non-infected people that may acquire the virus.
EQ Exposed pool (quaran-

tined)
people Total quarantined exposed people.

EH Exposed pool (hidden) people Total non-traced, non-quarantined exposed people.
IH,s Infectious pool (hidden,

symptomatic)
people Non-traced, non-quarantined people who are symptomatic.

IH Infectious pool (hidden) people Total non-traced, non-quarantined infectious people.
IQ Infectious pool (quaran-

tined)
people Total quarantined infectious people.

N New infections (Total) cases day−1 Given by: N = γ (1− kt)R0I
H + γ (ν + ε)R0I

Q + S
MΦt.

kt Contact reduction % Reduction of infectious contacts, related to pre-COVID-19
times.

N̂obs Observed new infections
(influx to traced pool)

cases day−1 Daily new cases, observed from the quarantined pool; de-
layed because of imperfect reporting and realistic contact
tracing.

R̂obs
t Observed reproduction

number
− The reproduction number that can be estimated only from

the observed cases: R̂obs
t = N̂obs(t)/N̂obs(t− 4).
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S2 Supplementary Notes
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Supplementary Figure S1: Flowchart of the complete model.

S2.1 Strategies to face COVID-19 differ among countries.

Very low case numbers and even local eradication has been achieved by several South- and East-Asian
countries, as well as Australia and New-Zealand. By aiming for local eradication, these countries reached
very low values below one daily new case per million (median 0.5, Fig. S2 C). If local eradication is successful,
these countries can profit from the absorbing state of zero SARS-CoV-2 infections, i.e. after local eradication
new infection chains are only started if a virus is de novo carried into the country [69,70]. However, the local
eradication is constantly put at risk by undetected influx of new viruses from abroad, requiring very strict
quarantine for international travel, and – once the spread got out of control – decisive action to completely
stop all infection chains. However, the more countries adhere to this strategy successfully, the closer one may
get to global eradication.
In many European countries over the summer, case numbers were relatively low, typically around 10 daily
new cases per million (Fig. S2 B). During that time, contacts were in general only mildly or moderately
restricted, and containment was complemented by hygiene, masks, and other preventive measures. However,
in summer and autumn, most European countries developed a second wave Fig. S4. The causes are certainly
diverse, from increasing contact rates to seasonal effects and travel-related influx. Seasonal effects alone
cannot explain the second wave, as neighboring countries like Portugal versus Spain, or Finland versus Sweden
show greatly different dynamics (see [52]). Hence, it seems to be possible to maintain an equilibrium at fairly
low case numbers, but that equilibrium is fragile at high case numbers and novel waves can emerge at any
time.
Sustained high levels of case numbers have been observed in several countries such that TTI probably couldn’t
be performed effectively. Around 130 daily new cases per million have been observed e.g. in many (but
not all) American countries (median 129.54, Fig. S2 A). It shows that high levels of daily new infections
can be maintained in principle. However the stringency of interventions is similar or higher compared to
other countries (see [40]), and even with these high numbers it will probably take about 200.000/150 = 1333
to 700.000/150 = 4666 days, thus several years, until 20 to 70 % of the population is infected and herd
immunity reached – assuming the duration of individual immunity is long enough. That high level of new
infections leads to a considerable death toll, as currently about 1.5 % of the infected would die (depending on
age structure [71,72]). Moreover, containment measures like quarantine become unsustainable because, if
implemented, each one of the 200 daily new infected cases would require the quarantine of 5-50 people (their
high-risk contacts) for about 10 days, causing 1 - 10 % of the population being in quarantine at any given
day. Therefore the alleged economical and social benefits of such a strategy [73,74] may be questionable.
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Supplementary Figure S2: Strategies of countries to fight SARS-CoV-2 differ widely and are reflected in
case numbers. (A) Strategies that involve little nonpharmaceutical interventions rely on the population to hinder
the spread in a self-regulated manner and are often accompanied by high case numbers. Examples can be dominantly
found in North- and South-America, the median of daily new cases for the shown examples and time range exceeds 100
per million inhabitants per day. (B) Strategies that aim to keep case numbers low through extensive TTI, combined
with temporary lockdowns can lead to medium case numbers. As the effectiveness of TTI measures depends on daily
infections, case numbers can seemingly explode when the (hard-to-estimate) TTI capacity limit is exceeded. Many
European countries managed to stabilize case numbers over the summer but are now seeing case numbers that rise
faster-than-exponential. The median of daily new cases for the shown examples and time range is 9.88 per million per
day. (C) When the external influx is low and/or employed strategies to reduce contacts are very effective, the stable
regime can be reached. In this case, average case numbers are very low and local outbreaks can be controlled well
through local interventions. Examples can be dominantly found in East-Asia and Oceania. The median of daily new
cases for the shown examples and time range is 0.55 per million per day. Raw data and preliminary visualizations
were obtained from [52].

S2.2 On the incorporation of random testing in the TTI scheme

Testing can also be done in a random manner or randomly combined with a tracing strategy. Even though
the amount of tests that would be required for such purposes would be enormous, the development of fast,
cheap, and reliable tests offers an interesting alternative to consider.
In this supplementary note we derive the equations presented in the methods but also including random
testing. As therein described, random testing is assumed to occur at a constant rate λr, which, for default
parameters, reflect the amount of tests per day per million people. In that way, it seems reasonable to
consider unfeasible testing rates surpassing λmax

r = 0.1, as it would mean that a 10 % of the population is
tested everyday.
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S2.2.1 Number of cases observable through testing N test

When random testing is included in the scheme, the solution of equation (17) for the symptomatic and
asymptomatic infections -hidden- would be given by equations (22) and (23).

χs,r =

 ρτ exp (−ρτ) , if ρ ≈ λs + λr
ρ

(λs + λr)− ρ
(exp (−ρτ)− exp (−τ (λs + λr))) , else. (22)

χr =
{

ρτ exp (−ρτ) , if ρ ≈ λr
ρ

λr − ρ
(exp (−ρτ)− exp (−τλr)) , else. (23)

If both symptom-based and random testing take place simultaneously, the number of discovered infections is
given by

N test = λrI
H + λsI

H,s (24)

Further, assuming that after reaching N test
max, the testing rates at the overhead pool-sizes would decrease to

λ′s and λ′r, respectively, for symptom-driven and random testing. We further assume that testing resources
would be exclusively allocated to sustain the symptom-driven testing in our default scenario. The overall
testing term N test would be given by:

N test = λr min
(
IH , IHmax

)
+ λ′r max

(
0, IH−IHmax

)
+ λs min

(
IH,s, IH,smax

)
+ λ′s max

(
0, IH,s−IH,smax

)
,

(25)

where IH,smax, I
H
max represent the pool sizes of the symptomatic hidden and total hidden pools, respectively, at

the TTI limit, i.e. λrIHmax + λsI
H,s
max

!= N test
max, reached at time t = t∗. Defining ϕ := IH,s

IH

∣∣∣
t=t∗

, we can express
such magnitudes in term of the maximum capacity N test

max:

IH,smax = ϕN test
max

ϕλs + λr
(26)

IHmax = N test
max

ϕλs + λr
. (27)

The explicit value of ϕ can be obtained numerically in the integration routine, or estimated trough the use of
the equilibrium values of the differential equations, ϕ = IH,s

∞
IH
∞

(as implemented in our code). The expression
for the symptomatic hidden pool IH,s in the presence of random testing is slightly different;

N test
s = λr min

(
IH,s, IH,smax

)
+ λ′r max

(
0, IH,s−IH,smax

)
+ λs min

(
IH,s, IH,smax

)
+ λ′s max

(
0, IH,s−IH,smax

)
.

(28)

S2.2.2 Number of cases observable through contact-tracing N traced

Because of TTI, infectious individuals move (or are likely to move) from the hidden to the quarantined
infectious pool before recovering. Therefore, they spend a comparatively shorter amount of time there and,
on average, would not generate the expected amount of offspring infections as some would be prevented.
Assuming the average residence time of untested individuals is 1

γ , we estimate the residence time of individuals
removed by symptom-driven testing and random testing. Noting that symptomatic individuals can be tested
and therefore removed by any of the testing criteria, their residence time would be approximately 1

γ+λs+λr
,

whereas the average residence time of asymptomatic individuals would be 1
γ+λr

. Therefore, the fractions of
time that symptomatic and asymptomatic individuals stay unnoticed are respectively

ts = γ

γ + λs + λr
, (29)
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and

tr = γ

γ + λr
. (30)

If the daily new cases observed through testing, delayed at the moment of processing, N test
t−τ , are within the

tracing capacity of the health authorities, i.e. N test
t−τ ≤ N test

max, then N traced is defined as

N traced = ηRHt−τ

(
IHt−τ trλr + IH,st−τ (tsλs + (ts − tr)λr)

)
. (31)

Otherwise, using the expressions for IH and IH,s when the TTI capacity is reached derived in the previous
section, we can obtain an effective rate

λeq = λr (1− ϕ) tr + ϕλsts
λr + ϕλs

. (32)

Therefore, the average amount of positive cases identified by contact tracing in the TTI limit is given by

N traced = ηRHt−τN
test
maxλeq. (33)

To sum up the last equations:

N traced =
{
ηRHt−τ (IHt−τ trλr + IH,st−τ (tsλs + (ts − tr)λr)) if N test

t−τ ≤ N test
max

ηRHt−τN
test
maxλeq else

(34)

S2.3 Linear stability analysis and uncertainty propagation

For analyzing the stability of the governing differential equations, namely, whether an outbreak could be
controlled, we studied the linear stability of the system. Moreover, we consider that, within the time-
frame considered for stability purposes, the fraction S

M would remain somewhat constant, we consider the
linealized version of equations (2)– (6), defining a system of delay differential equations for the variables
x(t) =

[
EQ(t); EH(t); IQ(t); IH(t); IH,s(t)

]
. We define matrices A and B as:

A =


−ρ 0 νγR0 0 0
0 −ρ εγR0 γ (1− kt)R0 0
ρ 0 −γ λr λs
0 ρ 0 −γ − λr −λs
0 (1−ξ) ρ 0 0 −γ − λr − λs

 (35)

B =


0 0 0 λeff

r χτ λeff
s χτ

0 0 0 −λeff
r χτ −λeff

s χτ
0 0 0 λeff

r (ξχr + (1−ξ)χs,r) λeff
s (ξχr + (1−ξ)χs,r)

0 0 0 −λeff
r (ξχr + (1−ξ)χs,r) −λeff

s (ξχr + (1−ξ)χs,r)
0 0 0 −λeff

r (1−ξ)χs,r −λeff
s (1−ξ)χs,r

 η (1−kt)R0, (36)

where

λeff
r = γλr

λr + γ
, λeff

s = γ

(
λs + λr

γ + λs + λr
− λr
λr + γ

)
. (37)

The equations governing the dynamics for vector x(t) are then presented in their matrix form:

x′(t) = Ax(t) +Bx(t− τ). (38)

We determine the critical values for the contact reduction kcrit
t , for which exponential solutions would be

asymptotically stable. Eigenvalues were determined by systematically solving the nonlinear eigenvalues
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problem for stability [63], where the solution operation was approximated with a Chebyshev differentiation
matrix [64]. Eigenvalues, in this sense, would be solutions of the scalar equation

det
(
−sI +A+ e−sτB

)
= 0 (39)

Noting that A and B explicitly depend on the model parameters, we numerically explore which combinations
of them would result in stable, metastable or unstable case numbers. Concretely, we studied the minimum
–critical– contact reduction required for stablilization kcrit

t in two scenarios; i) low case numbers, and TTI
fully operative (both testing and contact tracing), and ii) high case numbers, above the TTI limit, where
testing would be inefficient and solely symptom driven (λs = λ′s, η = λr = λ′r = 0).
To explore the uni-variate impact different signature parameters have on kcrit

t , we studied the zeros of (39) as
a function of kt using the @fzero MATLAB function (Fig. S3A). Using the same routines and a random
sampling procedure, we propagate uncertainties in the values of these parameters, uni-variate (Fig. S3B), and
multivariate (Fig. S3C).

Supplementary Table S3: Parameter uncertainty propagation
Parameter Meaning Median 95% CI α β Dist. Units
ξ Asymptomatic ratio 0.32 0.23–0.42 27.5 27.8 beta −
λs Symptom-driven test rate 0.25 0.20–0.31 56 168 beta days−1

ν Registered contacts (quaran-
tined)

0.07 0.03–0.13 8.25 101.8 beta −

η Tracing efficiency 0.66 0.59–0.73 117.9 60.7 beta −
ε Lost contacts (quarantined) 0.05 0.01–0.11 3.8 71.25 beta −

kcrit
t

∣∣∣
TTI

Necessary contact reduction
with TTI

39 % 24–53 % − − − −

kcrit
t

∣∣∣
no TTI

Necessary contact reduction
without TTI

58 % 53–62 % − − − −
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Supplementary Figure S3: Propagation of TTI-parameter uncertainties to the critical contact reduction
required for stability. As the different parameters involved in our model play different roles, the way their variability
propagates to kcrit

t differs, even when their variability profiles look similar. (A) Impact of single-parameter variation
on the critical hidden reproduction number kcrit

t . To evaluate the monotony (direction) of their impact on kcrit
t , we

scan their entire definition range, ignoring the practical feasibility of achieving such values. Dotted black line shows
the default critical hidden reproduction number. (B) Univariate uncertainties of TTI parameters modelled by beta
distributions centered on their default value (dotted black line), and the resulting distribution of critical reproduction
numbers kcrit

t (right column). Results are shown assuming testing only (light colors) or testing and tracing (dark
colors). The default value of kcrit

t is marked by the dotted lines, in the presence (black) or absence (grey) of tracing.
(C) Distribution of critical reproduction numbers arising from multivariate uncertainty propagation given by the joint
of the distributions shown in (A) for testing only (light colors), or testing and tracing (dark colors). The default value
of RH

crit is marked by the dotted lines, in the presence (black) or absence (grey) of tracing. Results show averages of
100 000 realizations.

On the contact reduction required for achieving early herd immunity.

In Supplementary Section S2.3, we derived a methodology for obtaining the minimal, critical contact reduction
kcrit
t for which the linear system is asymptotically stable. Such values, however, assume a fully susceptible

population, as we ignore the scaling factor S
M .

The herd immunity threshold % represents the fraction of the population that needs to be immunized for
controlling the spread of an infectious disease. It can be expressed in terms of the effective reproduction
number Rt:

% = 1− 1
Rt
. (40)

In the context of our model, Rt can be expressed in terms of the reduction of contagious contacts kt and the
basic reproduction number R0; Rt = (1− kt)R0. Nonetheless, in further stages of an ongoing outbreak, the
fraction of people that is no longer susceptible would have an effect, thus we include also the scaling factor S

M :

Rt = (1− kt)
S

M
R0. (41)
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Combining both equation (40) and (41), we can express % as

% = 1− 1
(1− kt) (1− f)R0

, (42)

assuming a quasi-stationary dynamics for S, and defining f = 1− S
M . Suppose we study the case in which no

major behavioral changes take place, thus the herd immunity threshold % would remain the same. On the
other hand, because of the sole fact of having a progressively increasing immunization among the population
(because of vaccination or post-infection immunity), the required reduction of contacts for stabilization kcrit

t
will decrease. Assuming critical conditions, we use kt = kcrit

t in equation (42):

% = 1− 1
(1− kcrit

t ) (1− f)R0
, (43)

As we assumed that no behavioral change is taking place, we obtain the herd immunity threshold by only
evaluating equation (40) at f = 0.

% = 1− 1
(1− kcrit,0)R0

, (44)

and subtracting (43) and (44) we obtain an expression for kcrit
t (f)

kcrit
t (f) = 1− 1− kcrit,0

1− f (45)

Inferring the reproduction number of COVID-19 from Jun to Oct. 2020

We use the framework of Bayesian inference on an SIR model presented in our previous work [39] to infer
the daily growth rate λ∗(t). An SIR compartmental model with weekly change points is used whose central
epidemiological parameters are inferred using the PyMC3 package [75]. A weekly modulation was applied
to take weekly reporting structure and weekend delays into account. After inference a rolling average was
performed on the daily case numbers for comparability and clarity. The effective reproduction number R̂eff

t
can be expressed dependent on the effective daily growth rate:

R̂eff
t = (λ∗(t) + 1)4 (46)

This short analysis was performed for Germany (Fig. 6) and other European countries (Fig. S4) which showed
the same metastable behaviour, while their case numbers were below a threshold around 50 cases per day
(per million). A transition into the unstable regime can be seen once case numbers surpass this threshold.
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Supplementary Figure S4: Comparison of the reproduction number and reported cases as second wave
emerges in different European countries. For each country, parameters of an SIR model were fitted to the
reported data of the Our World in Data repository [52], following the procedure presented in [39]. (Panels X1) The
time-dependent effective growth rate stays between −0.1 and 0.1 and rises before the tipping point. This corresponds
to an effective reproduction number between 0.7 and 1.3, which matches our preliminary assumptions. The time range
is adjusted to focus on the tipping point. (Panels X2) After a (meta-)stable regime in summer, all of the selected
countries show a rise in case numbers and a tipping point at around 50 new cases per day per million, where the
spread self-accelerates and the cases increase significantly. (Insets) Case numbers for the full available time range.
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